import gradio as gr import requests def search_huggingface_datasets(query, type): if not query: # If the query is empty, return an empty list return [] url = f"https://huggingface.co/api/quicksearch?q={query}&type={type}&limit=20" response = requests.get(url) if response.status_code == 200: data = response.json() print(data) dataset_names = [d['id'] for d in data['datasets']] return dataset_names else: return ["Error fetching datasets"] def update_dropdown(query, type, key_up_data: gr.KeyUpData): datasets = search_huggingface_datasets(key_up_data.input_value, type) return gr.update(choices=datasets, visible=True) with gr.Blocks() as demo: model_dropdown = gr.Dropdown(label="Models Auto-Complete", choices=[""], allow_custom_value=True) dataset_dropdown = gr.Dropdown(label="Datasets Auto-Complete", choices=[""], allow_custom_value=True) spaces_dropdown = gr.Dropdown(label="Spaces Auto-Complete", choices=[""], allow_custom_value=True) model_dropdown.key_up(fn=update_dropdown, inputs=[dataset_dropdown, gr.State("model")], outputs=dataset_dropdown, queue=False, show_progress="hidden") dataset_dropdown.key_up(fn=update_dropdown, inputs=[dataset_dropdown, gr.State("dataset")], outputs=dataset_dropdown, queue=False, show_progress="hidden") spaces_dropdown.key_up(fn=update_dropdown, inputs=[dataset_dropdown, gr.State("space")], outputs=dataset_dropdown, queue=False, show_progress="hidden") demo.launch()