Spaces:
Sleeping
Sleeping
File size: 8,719 Bytes
24c0900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from pydoc import describe
import gradio as gr
import torch
from omegaconf import OmegaConf
import sys
sys.path.append(".")
sys.path.append('./taming-transformers')
sys.path.append('./latent-diffusion')
from taming.models import vqgan
from ldm.util import instantiate_from_config
torch.hub.download_url_to_file('http://batbot.ai/models/latent-diffusion/models/ldm/text2img-large/model.ckpt','txt2img-f8-large.ckpt')
#@title Import stuff
import argparse, os, sys, glob
import numpy as np
from PIL import Image
from einops import rearrange
from torchvision.utils import make_grid
import transformers
import gc
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from open_clip import tokenizer
import open_clip
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cuda")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model = model.half().cuda()
model.eval()
return model
config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml")
model = load_model_from_config(config, f"txt2img-f8-large.ckpt")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
#NSFW CLIP Filter
clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32-quickgelu', pretrained='laion400m_e32')
text = tokenizer.tokenize(["NSFW", "adult content", "porn", "naked people","genitalia","penis","vagina"])
with torch.no_grad():
text_features = clip_model.encode_text(text)
def run(prompt, steps, width, height, images, scale):
opt = argparse.Namespace(
prompt = prompt,
outdir='latent-diffusion/outputs',
ddim_steps = int(steps),
ddim_eta = 0,
n_iter = 1,
W=int(width),
H=int(height),
n_samples=int(images),
scale=scale,
plms=True
)
if opt.plms:
opt.ddim_eta = 0
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
prompt = opt.prompt
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
all_samples=list()
all_samples_images=list()
with torch.no_grad():
with torch.cuda.amp.autocast():
with model.ema_scope():
uc = None
if opt.scale > 0:
uc = model.get_learned_conditioning(opt.n_samples * [""])
for n in range(opt.n_iter):
c = model.get_learned_conditioning(opt.n_samples * [prompt])
shape = [4, opt.H//8, opt.W//8]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
image_vector = Image.fromarray(x_sample.astype(np.uint8))
image = preprocess(image_vector).unsqueeze(0)
image_features = clip_model.encode_image(image)
sims = image_features @ text_features.T
if(sims.max()<18):
all_samples_images.append(image_vector)
else:
return(None,None,"Sorry, NSFW content was detected on your outputs. Try again with different prompts. If you feel your prompt was not supposed to give NSFW outputs, this may be due to a bias in the model. Read more about biases in the Biases Acknowledgment section below.")
#Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png"))
base_count += 1
all_samples.append(x_samples_ddim)
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=2)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png'))
return(Image.fromarray(grid.astype(np.uint8)),all_samples_images,None)
image = gr.outputs.Image(type="pil", label="Your result")
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}"
iface = gr.Interface(fn=run, inputs=[
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1),
gr.inputs.Radio(label="Width", choices=[32,64,128,256],default=256),
gr.inputs.Radio(label="Height", choices=[32,64,128,256],default=256),
gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4),
gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0),
#gr.inputs.Slider(label="ETA - between 0 and 1. Lower values can provide better quality, higher values can be more diverse",default=0.0,minimum=0.0, maximum=1.0,step=0.1),
],
outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")],
css=css,
title="Generate images from text with Latent Diffusion LAION-400M",
description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/CompVis/latent-diffusion' target='_blank'>Latent Diffusion</a> is a text-to-image model created by <a href='https://github.com/CompVis' target='_blank'>CompVis</a>, trained on the <a href='https://laion.ai/laion-400-open-dataset/'>LAION-400M dataset.</a><br>This UI to the model was assembled by <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>",
article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>")
iface.launch(enable_queue=True) |