Spaces:
Running
on
L4
Running
on
L4
File size: 10,099 Bytes
24c0900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from torchvision.datasets.utils import download_url
from ldm.util import instantiate_from_config
import torch
import os
# todo ?
from google.colab import files
from IPython.display import Image as ipyimg
import ipywidgets as widgets
from PIL import Image
from numpy import asarray
from einops import rearrange, repeat
import torch, torchvision
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import ismap
import time
from omegaconf import OmegaConf
def download_models(mode):
if mode == "superresolution":
# this is the small bsr light model
url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1'
url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1'
path_conf = 'logs/diffusion/superresolution_bsr/configs/project.yaml'
path_ckpt = 'logs/diffusion/superresolution_bsr/checkpoints/last.ckpt'
download_url(url_conf, path_conf)
download_url(url_ckpt, path_ckpt)
path_conf = path_conf + '/?dl=1' # fix it
path_ckpt = path_ckpt + '/?dl=1' # fix it
return path_conf, path_ckpt
else:
raise NotImplementedError
def load_model_from_config(config, ckpt):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
return {"model": model}, global_step
def get_model(mode):
path_conf, path_ckpt = download_models(mode)
config = OmegaConf.load(path_conf)
model, step = load_model_from_config(config, path_ckpt)
return model
def get_custom_cond(mode):
dest = "data/example_conditioning"
if mode == "superresolution":
uploaded_img = files.upload()
filename = next(iter(uploaded_img))
name, filetype = filename.split(".") # todo assumes just one dot in name !
os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}")
elif mode == "text_conditional":
w = widgets.Text(value='A cake with cream!', disabled=True)
display(w)
with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f:
f.write(w.value)
elif mode == "class_conditional":
w = widgets.IntSlider(min=0, max=1000)
display(w)
with open(f"{dest}/{mode}/custom.txt", 'w') as f:
f.write(w.value)
else:
raise NotImplementedError(f"cond not implemented for mode{mode}")
def get_cond_options(mode):
path = "data/example_conditioning"
path = os.path.join(path, mode)
onlyfiles = [f for f in sorted(os.listdir(path))]
return path, onlyfiles
def select_cond_path(mode):
path = "data/example_conditioning" # todo
path = os.path.join(path, mode)
onlyfiles = [f for f in sorted(os.listdir(path))]
selected = widgets.RadioButtons(
options=onlyfiles,
description='Select conditioning:',
disabled=False
)
display(selected)
selected_path = os.path.join(path, selected.value)
return selected_path
def get_cond(mode, selected_path):
example = dict()
if mode == "superresolution":
up_f = 4
visualize_cond_img(selected_path)
c = Image.open(selected_path)
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True)
c_up = rearrange(c_up, '1 c h w -> 1 h w c')
c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1.
c = c.to(torch.device("cuda"))
example["LR_image"] = c
example["image"] = c_up
return example
def visualize_cond_img(path):
display(ipyimg(filename=path))
def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None):
example = get_cond(task, selected_path)
save_intermediate_vid = False
n_runs = 1
masked = False
guider = None
ckwargs = None
mode = 'ddim'
ddim_use_x0_pred = False
temperature = 1.
eta = 1.
make_progrow = True
custom_shape = None
height, width = example["image"].shape[1:3]
split_input = height >= 128 and width >= 128
if split_input:
ks = 128
stride = 64
vqf = 4 #
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
"vqf": vqf,
"patch_distributed_vq": True,
"tie_braker": False,
"clip_max_weight": 0.5,
"clip_min_weight": 0.01,
"clip_max_tie_weight": 0.5,
"clip_min_tie_weight": 0.01}
else:
if hasattr(model, "split_input_params"):
delattr(model, "split_input_params")
invert_mask = False
x_T = None
for n in range(n_runs):
if custom_shape is not None:
x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0])
logs = make_convolutional_sample(example, model,
mode=mode, custom_steps=custom_steps,
eta=eta, swap_mode=False , masked=masked,
invert_mask=invert_mask, quantize_x0=False,
custom_schedule=None, decode_interval=10,
resize_enabled=resize_enabled, custom_shape=custom_shape,
temperature=temperature, noise_dropout=0.,
corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid,
make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred
)
return logs
@torch.no_grad()
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
mask=None, x0=None, quantize_x0=False, img_callback=None,
temperature=1., noise_dropout=0., score_corrector=None,
corrector_kwargs=None, x_T=None, log_every_t=None
):
ddim = DDIMSampler(model)
bs = shape[0] # dont know where this comes from but wayne
shape = shape[1:] # cut batch dim
print(f"Sampling with eta = {eta}; steps: {steps}")
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
mask=mask, x0=x0, temperature=temperature, verbose=False,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs, x_T=x_T)
return samples, intermediates
@torch.no_grad()
def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False,
invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000,
resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False):
log = dict()
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=not (hasattr(model, 'split_input_params')
and model.cond_stage_key == 'coordinates_bbox'),
return_original_cond=True)
log_every_t = 1 if save_intermediate_vid else None
if custom_shape is not None:
z = torch.randn(custom_shape)
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
z0 = None
log["input"] = x
log["reconstruction"] = xrec
if ismap(xc):
log["original_conditioning"] = model.to_rgb(xc)
if hasattr(model, 'cond_stage_key'):
log[model.cond_stage_key] = model.to_rgb(xc)
else:
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
if model.cond_stage_model:
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
if model.cond_stage_key =='class_label':
log[model.cond_stage_key] = xc[model.cond_stage_key]
with model.ema_scope("Plotting"):
t0 = time.time()
img_cb = None
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
eta=eta,
quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0,
temperature=temperature, noise_dropout=noise_dropout,
score_corrector=corrector, corrector_kwargs=corrector_kwargs,
x_T=x_T, log_every_t=log_every_t)
t1 = time.time()
if ddim_use_x0_pred:
sample = intermediates['pred_x0'][-1]
x_sample = model.decode_first_stage(sample)
try:
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
log["sample_noquant"] = x_sample_noquant
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
except:
pass
log["sample"] = x_sample
log["time"] = t1 - t0
return log |