Spaces:
Runtime error
Runtime error
Commit
·
aaee24f
1
Parent(s):
320ce78
debug faster by not downloading the model
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ sys.path.append('./latent-diffusion')
|
|
9 |
from taming.models import vqgan
|
10 |
from ldm.util import instantiate_from_config
|
11 |
|
12 |
-
torch.hub.download_url_to_file('https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt','txt2img-f8-large.ckpt')
|
13 |
|
14 |
#@title Import stuff
|
15 |
import argparse, os, sys, glob
|
@@ -26,7 +26,7 @@ from ldm.models.diffusion.plms import PLMSSampler
|
|
26 |
|
27 |
def load_model_from_config(config, ckpt, verbose=False):
|
28 |
print(f"Loading model from {ckpt}")
|
29 |
-
pl_sd = torch.load(ckpt, map_location="cuda
|
30 |
sd = pl_sd["state_dict"]
|
31 |
model = instantiate_from_config(config.model)
|
32 |
m, u = model.load_state_dict(sd, strict=False)
|
@@ -41,8 +41,8 @@ def load_model_from_config(config, ckpt, verbose=False):
|
|
41 |
model.eval()
|
42 |
return model
|
43 |
|
44 |
-
config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml")
|
45 |
-
model = load_model_from_config(config, f"txt2img-f8-large.ckpt")
|
46 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
47 |
model = model.to(device)
|
48 |
|
|
|
9 |
from taming.models import vqgan
|
10 |
from ldm.util import instantiate_from_config
|
11 |
|
12 |
+
#torch.hub.download_url_to_file('https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt','txt2img-f8-large.ckpt')
|
13 |
|
14 |
#@title Import stuff
|
15 |
import argparse, os, sys, glob
|
|
|
26 |
|
27 |
def load_model_from_config(config, ckpt, verbose=False):
|
28 |
print(f"Loading model from {ckpt}")
|
29 |
+
pl_sd = torch.load(ckpt, map_location="cuda")
|
30 |
sd = pl_sd["state_dict"]
|
31 |
model = instantiate_from_config(config.model)
|
32 |
m, u = model.load_state_dict(sd, strict=False)
|
|
|
41 |
model.eval()
|
42 |
return model
|
43 |
|
44 |
+
config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml")
|
45 |
+
model = load_model_from_config(config, f"txt2img-f8-large.ckpt")
|
46 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
47 |
model = model.to(device)
|
48 |
|