Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import requests | |
import subprocess | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration | |
from huggingface_hub import snapshot_download | |
import torch | |
import uuid | |
import os | |
import shutil | |
import json | |
import random | |
from slugify import slugify | |
import argparse | |
import importlib | |
import sys | |
MAX_IMAGES = 50 | |
training_script_url = "https://raw.githubusercontent.com/huggingface/diffusers/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py" | |
subprocess.run(['wget', training_script_url]) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
FACES_DATASET_PATH = snapshot_download(repo_id="multimodalart/faces-prior-preservation", repo_type="dataset") | |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
model = Blip2ForConditionalGeneration.from_pretrained( | |
"Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16 | |
) | |
#Run first captioning as apparently makes the other ones faster | |
pil_image = Image.new('RGB', (512, 512), 'black') | |
blip_inputs = processor(images=pil_image, return_tensors="pt").to(device, torch.float16) | |
generated_ids = model.generate(**blip_inputs) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
def load_captioning(uploaded_images, option): | |
updates = [] | |
if len(uploaded_images) > MAX_IMAGES: | |
raise gr.Error( | |
f"Error: for now, only {MAX_IMAGES} or less images are allowed for training" | |
) | |
# Update for the captioning_area | |
for _ in range(3): | |
updates.append(gr.update(visible=True)) | |
# Update visibility and image for each captioning row and image | |
for i in range(1, MAX_IMAGES + 1): | |
# Determine if the current row and image should be visible | |
visible = i <= len(uploaded_images) | |
# Update visibility of the captioning row | |
updates.append(gr.update(visible=visible)) | |
# Update for image component - display image if available, otherwise hide | |
image_value = uploaded_images[i - 1] if visible else None | |
updates.append(gr.update(value=image_value, visible=visible)) | |
text_value = option if visible else None | |
updates.append(gr.update(value=text_value, visible=visible)) | |
return updates | |
def check_removed_and_restart(images): | |
visible = bool(images) | |
return [gr.update(visible=visible) for _ in range(3)] | |
def make_options_visible(option): | |
if (option == "object") or (option == "face"): | |
sentence = "A photo of TOK" | |
elif option == "style": | |
sentence = "in the style of TOK" | |
elif option == "custom": | |
sentence = "TOK" | |
return ( | |
gr.update(value=sentence, visible=True), | |
gr.update(visible=True), | |
) | |
def change_defaults(option, images): | |
num_images = len(images) | |
max_train_steps = num_images * 150 | |
max_train_steps = 500 if max_train_steps < 500 else max_train_steps | |
random_files = [] | |
with_prior_preservation = False | |
class_prompt = "" | |
if(num_images > 24): | |
repeats = 1 | |
elif(num_images > 10): | |
repeats = 2 | |
else: | |
repeats = 3 | |
if(max_train_steps > 2400): | |
max_train_steps = 2400 | |
if(option == "face"): | |
rank = 64 | |
max_train_steps = num_images*100 | |
lr_scheduler = "constant" | |
#Takes 150 random faces for the prior preservation loss | |
directory = FACES_DATASET_PATH | |
file_count = 150 | |
files = [os.path.join(directory, file) for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))] | |
random_files = random.sample(files, min(len(files), file_count)) | |
with_prior_preservation = True | |
class_prompt = "a photo of a person" | |
elif(option == "style"): | |
rank = 16 | |
lr_scheduler = "polynomial" | |
elif(option == "object"): | |
rank = 8 | |
repeats = 1 | |
lr_scheduler = "constant" | |
else: | |
rank = 32 | |
lr_scheduler = "constant" | |
return max_train_steps, repeats, lr_scheduler, rank, with_prior_preservation, class_prompt, random_files | |
def create_dataset(*inputs): | |
images = inputs[0] | |
destination_folder = str(uuid.uuid4()) | |
print(destination_folder) | |
if not os.path.exists(destination_folder): | |
os.makedirs(destination_folder) | |
jsonl_file_path = os.path.join(destination_folder, 'metadata.jsonl') | |
with open(jsonl_file_path, 'a') as jsonl_file: | |
for index, image in enumerate(images): | |
new_image_path = shutil.copy(image, destination_folder) | |
original_caption = inputs[index + 1] | |
file_name = os.path.basename(new_image_path) | |
data = {"file_name": file_name, "prompt": original_caption} | |
jsonl_file.write(json.dumps(data) + "\n") | |
return destination_folder | |
def start_training( | |
lora_name, | |
training_option, | |
concept_sentence, | |
optimizer, | |
use_snr_gamma, | |
snr_gamma, | |
mixed_precision, | |
learning_rate, | |
train_batch_size, | |
max_train_steps, | |
lora_rank, | |
repeats, | |
with_prior_preservation, | |
class_prompt, | |
class_images, | |
num_class_images, | |
train_text_encoder_ti, | |
train_text_encoder_ti_frac, | |
num_new_tokens_per_abstraction, | |
train_text_encoder, | |
train_text_encoder_frac, | |
text_encoder_learning_rate, | |
seed, | |
resolution, | |
num_train_epochs, | |
checkpointing_steps, | |
prior_loss_weight, | |
gradient_accumulation_steps, | |
gradient_checkpointing, | |
enable_xformers_memory_efficient_attention, | |
adam_beta1, | |
adam_beta2, | |
prodigy_beta3, | |
prodigy_decouple, | |
adam_weight_decay, | |
adam_weight_decay_text_encoder, | |
adam_epsilon, | |
prodigy_use_bias_correction, | |
prodigy_safeguard_warmup, | |
max_grad_norm, | |
scale_lr, | |
lr_num_cycles, | |
lr_scheduler, | |
lr_power, | |
lr_warmup_steps, | |
dataloader_num_workers, | |
local_rank, | |
dataset_folder, | |
token, | |
progress = gr.Progress(track_tqdm=True) | |
): | |
slugged_lora_name = slugify(lora_name) | |
spacerunner_folder = str(uuid.uuid4()) | |
commands = [ | |
"pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0", | |
"pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix", | |
f"instance_prompt={concept_sentence}", | |
f"dataset_name=./{dataset_folder}", | |
"caption_column=prompt", | |
f"output_dir={slugged_lora_name}", | |
f"mixed_precision={mixed_precision}", | |
f"resolution={int(resolution)}", | |
f"train_batch_size={int(train_batch_size)}", | |
f"repeats={int(repeats)}", | |
f"gradient_accumulation_steps={int(gradient_accumulation_steps)}", | |
f"learning_rate={learning_rate}", | |
f"text_encoder_lr={text_encoder_learning_rate}", | |
f"adam_beta1={adam_beta1}", | |
f"adam_beta2={adam_beta2}", | |
f"optimizer={'adamW' if optimizer == '8bitadam' else optimizer}", | |
f"train_text_encoder_ti_frac={train_text_encoder_ti_frac}", | |
f"lr_scheduler={lr_scheduler}", | |
f"lr_warmup_steps={int(lr_warmup_steps)}", | |
f"rank={int(lora_rank)}", | |
f"max_train_steps={int(max_train_steps)}", | |
f"checkpointing_steps={int(checkpointing_steps)}", | |
f"seed={int(seed)}", | |
f"prior_loss_weight={prior_loss_weight}", | |
f"num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}", | |
f"num_train_epochs={int(num_train_epochs)}", | |
f"prodigy_beta3={prodigy_beta3}", | |
f"adam_weight_decay={adam_weight_decay}", | |
f"adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}", | |
f"adam_epsilon={adam_epsilon}", | |
f"prodigy_decouple={prodigy_decouple}", | |
f"prodigy_use_bias_correction={prodigy_use_bias_correction}", | |
f"prodigy_safeguard_warmup={prodigy_safeguard_warmup}", | |
f"max_grad_norm={max_grad_norm}", | |
f"lr_num_cycles={int(lr_num_cycles)}", | |
f"lr_power={lr_power}", | |
f"dataloader_num_workers={int(dataloader_num_workers)}", | |
f"local_rank={int(local_rank)}", | |
"cache_latents", | |
"push_to_hub", | |
] | |
slugged_lora_name | |
# Adding optional flags | |
if optimizer == "8bitadam": | |
commands.append("use_8bit_adam") | |
if gradient_checkpointing: | |
commands.append("gradient_checkpointing") | |
if train_text_encoder_ti: | |
commands.append("train_text_encoder_ti") | |
elif train_text_encoder: | |
commands.append("train_text_encoder") | |
commands.append(f"--train_text_encoder_frac={train_text_encoder_frac}") | |
if enable_xformers_memory_efficient_attention: | |
commands.append("enable_xformers_memory_efficient_attention") | |
if use_snr_gamma: | |
commands.append(f"snr_gamma={snr_gamma}") | |
if scale_lr: | |
commands.append("scale_lr") | |
if with_prior_preservation: | |
commands.append("with_prior_preservation") | |
commands.append(f"class_prompt={class_prompt}") | |
commands.append(f"num_class_images={int(num_class_images)}") | |
if class_images: | |
class_folder = str(uuid.uuid4()) | |
if not os.path.exists(class_folder): | |
os.makedirs(class_folder) | |
for image in class_images: | |
shutil.copy(image, class_folder) | |
commands.append(f"class_data_dir={class_folder}") | |
shutil.copytree(class_folder, f"{spacerunner_folder}/{class_folder}") | |
# Joining the commands with ';' separator for spacerunner format | |
spacerunner_args = ';'.join(commands) | |
if not os.path.exists(spacerunner_folder): | |
os.makedirs(spacerunner_folder) | |
shutil.copy("train_dreambooth_lora_sdxl_advanced.py", f"{spacerunner_folder}/script.py") | |
shutil.copytree(dataset_folder, f"{spacerunner_folder}/{dataset_folder}") | |
requirements='''-peft | |
torch | |
git+https://github.com/huggingface/diffusers@c05d71be04345b18a5120542c363f6e4a3f99b05 | |
transformers | |
accelerate | |
safetensors | |
prodigyopt | |
hf-transfer | |
git+https://github.com/huggingface/datasets.git''' | |
file_path = f'{spacerunner_folder}/requirements.txt' | |
with open(file_path, 'w') as file: | |
file.write(requirements) | |
# The subprocess call for autotrain spacerunner | |
api = HfApi(token=token) | |
username = api.whoami()["name"] | |
subprocess_command = ["autotrain", "spacerunner", "--project-name", slugged_lora_name, "--script-path", spacerunner_folder, "--username", username, "--token", token, "--backend", "spaces-a10gl", "--env","HF_TOKEN=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;HF_HUB_ENABLE_HF_TRANSFER=1", "--args", spacerunner_args] | |
print(subprocess_command) | |
subprocess.run(subprocess_command) | |
return f"Your training has started. Run over to <a href='https://huggingface.co/spaces/{username}/slugged_lora_name'>{username}/slugged_lora_name</a> to check the status (click the logs tab)" | |
def start_training_og( | |
lora_name, | |
training_option, | |
concept_sentence, | |
optimizer, | |
use_snr_gamma, | |
snr_gamma, | |
mixed_precision, | |
learning_rate, | |
train_batch_size, | |
max_train_steps, | |
lora_rank, | |
repeats, | |
with_prior_preservation, | |
class_prompt, | |
class_images, | |
num_class_images, | |
train_text_encoder_ti, | |
train_text_encoder_ti_frac, | |
num_new_tokens_per_abstraction, | |
train_text_encoder, | |
train_text_encoder_frac, | |
text_encoder_learning_rate, | |
seed, | |
resolution, | |
num_train_epochs, | |
checkpointing_steps, | |
prior_loss_weight, | |
gradient_accumulation_steps, | |
gradient_checkpointing, | |
enable_xformers_memory_efficient_attention, | |
adam_beta1, | |
adam_beta2, | |
prodigy_beta3, | |
prodigy_decouple, | |
adam_weight_decay, | |
adam_weight_decay_text_encoder, | |
adam_epsilon, | |
prodigy_use_bias_correction, | |
prodigy_safeguard_warmup, | |
max_grad_norm, | |
scale_lr, | |
lr_num_cycles, | |
lr_scheduler, | |
lr_power, | |
lr_warmup_steps, | |
dataloader_num_workers, | |
local_rank, | |
dataset_folder, | |
progress = gr.Progress(track_tqdm=True) | |
): | |
slugged_lora_name = slugify(lora_name) | |
print(train_text_encoder_ti_frac) | |
commands = ["--pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0", | |
"--pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix", | |
f"--instance_prompt={concept_sentence}", | |
f"--dataset_name=./{dataset_folder}", | |
"--caption_column=prompt", | |
f"--output_dir={slugged_lora_name}", | |
f"--mixed_precision={mixed_precision}", | |
f"--resolution={int(resolution)}", | |
f"--train_batch_size={int(train_batch_size)}", | |
f"--repeats={int(repeats)}", | |
f"--gradient_accumulation_steps={int(gradient_accumulation_steps)}", | |
f"--learning_rate={learning_rate}", | |
f"--text_encoder_lr={text_encoder_learning_rate}", | |
f"--adam_beta1={adam_beta1}", | |
f"--adam_beta2={adam_beta2}", | |
f"--optimizer={'adamW' if optimizer == '8bitadam' else optimizer}", | |
f"--train_text_encoder_ti_frac={train_text_encoder_ti_frac}", | |
f"--lr_scheduler={lr_scheduler}", | |
f"--lr_warmup_steps={int(lr_warmup_steps)}", | |
f"--rank={int(lora_rank)}", | |
f"--max_train_steps={int(max_train_steps)}", | |
f"--checkpointing_steps={int(checkpointing_steps)}", | |
f"--seed={int(seed)}", | |
f"--prior_loss_weight={prior_loss_weight}", | |
f"--num_new_tokens_per_abstraction={int(num_new_tokens_per_abstraction)}", | |
f"--num_train_epochs={int(num_train_epochs)}", | |
f"--prodigy_beta3={prodigy_beta3}", | |
f"--adam_weight_decay={adam_weight_decay}", | |
f"--adam_weight_decay_text_encoder={adam_weight_decay_text_encoder}", | |
f"--adam_epsilon={adam_epsilon}", | |
f"--prodigy_decouple={prodigy_decouple}", | |
f"--prodigy_use_bias_correction={prodigy_use_bias_correction}", | |
f"--prodigy_safeguard_warmup={prodigy_safeguard_warmup}", | |
f"--max_grad_norm={max_grad_norm}", | |
f"--lr_num_cycles={int(lr_num_cycles)}", | |
f"--lr_power={lr_power}", | |
f"--dataloader_num_workers={int(dataloader_num_workers)}", | |
f"--local_rank={int(local_rank)}", | |
"--cache_latents" | |
] | |
if optimizer == "8bitadam": | |
commands.append("--use_8bit_adam") | |
if gradient_checkpointing: | |
commands.append("--gradient_checkpointing") | |
if train_text_encoder_ti: | |
commands.append("--train_text_encoder_ti") | |
elif train_text_encoder: | |
commands.append("--train_text_encoder") | |
commands.append(f"--train_text_encoder_frac={train_text_encoder_frac}") | |
if enable_xformers_memory_efficient_attention: | |
commands.append("--enable_xformers_memory_efficient_attention") | |
if use_snr_gamma: | |
commands.append(f"--snr_gamma={snr_gamma}") | |
if scale_lr: | |
commands.append("--scale_lr") | |
if with_prior_preservation: | |
commands.append(f"--with_prior_preservation") | |
commands.append(f"--class_prompt={class_prompt}") | |
commands.append(f"--num_class_images={int(num_class_images)}") | |
if(class_images): | |
class_folder = str(uuid.uuid4()) | |
if not os.path.exists(class_folder): | |
os.makedirs(class_folder) | |
for image in class_images: | |
shutil.copy(image, class_folder) | |
commands.append(f"--class_data_dir={class_folder}") | |
print(commands) | |
from train_dreambooth_lora_sdxl_advanced import main as train_main, parse_args as parse_train_args | |
args = parse_train_args(commands) | |
train_main(args) | |
#print(commands) | |
#subprocess.run(commands) | |
return "ok!" | |
def run_captioning(*inputs): | |
print(inputs) | |
images = inputs[0] | |
training_option = inputs[-1] | |
print(training_option) | |
final_captions = [""] * MAX_IMAGES | |
for index, image in enumerate(images): | |
original_caption = inputs[index + 1] | |
pil_image = Image.open(image) | |
blip_inputs = processor(images=pil_image, return_tensors="pt").to(device, torch.float16) | |
generated_ids = model.generate(**blip_inputs) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() | |
if training_option == "style": | |
final_caption = generated_text + " " + original_caption | |
else: | |
final_caption = original_caption + " " + generated_text | |
final_captions[index] = final_caption | |
yield final_captions | |
with gr.Blocks() as demo: | |
dataset_folder = gr.State() | |
gr.Markdown("# SDXL LoRA Dreambooth Training") | |
lora_name = gr.Textbox(label="The name of your LoRA", placeholder="e.g.: Persian Miniature Painting style, Cat Toy") | |
training_option = gr.Radio( | |
label="What are you training?", choices=["object", "style", "face", "custom"] | |
) | |
concept_sentence = gr.Textbox( | |
label="Concept sentence", | |
info="A common sentence to be used in all images as your captioning structure. TOK is a special mandatory token that will be used to teach the model your concept.", | |
placeholder="e.g.: A photo of TOK, in the style of TOK", | |
visible=False, | |
interactive=True, | |
) | |
with gr.Group(visible=False) as image_upload: | |
with gr.Row(): | |
images = gr.File( | |
file_types=["image"], | |
label="Upload your images", | |
file_count="multiple", | |
interactive=True, | |
visible=True, | |
scale=1, | |
) | |
with gr.Column(scale=3, visible=False) as captioning_area: | |
with gr.Column(): | |
gr.Markdown( | |
"""# Custom captioning | |
To improve the quality of your outputs, you can add a custom caption for each image, describing exactly what is taking place in each of them. Including TOK is mandatory. You can leave things as is if you don't want to include captioning. | |
""" | |
) | |
do_captioning = gr.Button("Add AI captions with BLIP-2") | |
output_components = [captioning_area] | |
caption_list = [] | |
for i in range(1, MAX_IMAGES + 1): | |
locals()[f"captioning_row_{i}"] = gr.Row(visible=False) | |
with locals()[f"captioning_row_{i}"]: | |
locals()[f"image_{i}"] = gr.Image( | |
width=64, | |
height=64, | |
min_width=64, | |
interactive=False, | |
scale=1, | |
show_label=False, | |
) | |
locals()[f"caption_{i}"] = gr.Textbox( | |
label=f"Caption {i}", scale=4 | |
) | |
output_components.append(locals()[f"captioning_row_{i}"]) | |
output_components.append(locals()[f"image_{i}"]) | |
output_components.append(locals()[f"caption_{i}"]) | |
caption_list.append(locals()[f"caption_{i}"]) | |
with gr.Accordion(open=False, label="Advanced options", visible=False) as advanced: | |
with gr.Row(): | |
with gr.Column(): | |
optimizer = gr.Dropdown( | |
label="Optimizer", | |
info="Prodigy is an auto-optimizer and works good by default. If you prefer to set your own learning rates, change it to AdamW. If you don't have enough VRAM to train with AdamW, pick 8-bit Adam.", | |
choices=[ | |
("Prodigy", "prodigy"), | |
("AdamW", "adamW"), | |
("8-bit Adam", "8bitadam"), | |
], | |
value="prodigy", | |
interactive=True, | |
) | |
use_snr_gamma = gr.Checkbox(label="Use SNR Gamma") | |
snr_gamma = gr.Number( | |
label="snr_gamma", | |
info="SNR weighting gamma to re-balance the loss", | |
value=5.000, | |
step=0.1, | |
visible=False, | |
) | |
mixed_precision = gr.Dropdown( | |
label="Mixed Precision", | |
choices=["no", "fp16", "bf16"], | |
value="bf16", | |
) | |
learning_rate = gr.Number( | |
label="UNet Learning rate", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.0000001, | |
value=1.0, # For prodigy you start high and it will optimize down | |
) | |
train_batch_size = gr.Number(label="Train batch size", value=2) | |
max_train_steps = gr.Number( | |
label="Max train steps", minimum=1, maximum=50000, value=1000 | |
) | |
lora_rank = gr.Number( | |
label="LoRA Rank", | |
info="Rank for the Low Rank Adaptation (LoRA), a higher rank produces a larger LoRA", | |
value=8, | |
step=2, | |
minimum=2, | |
maximum=1024, | |
) | |
repeats = gr.Number( | |
label="Repeats", | |
info="How many times to repeat the training data.", | |
value=1, | |
minimum=1, | |
maximum=200, | |
) | |
with gr.Column(): | |
with_prior_preservation = gr.Checkbox( | |
label="Prior preservation loss", | |
info="Prior preservation helps to ground the model to things that are similar to your concept. Good for faces.", | |
value=False, | |
) | |
with gr.Column(visible=False) as prior_preservation_params: | |
with gr.Tab("prompt"): | |
class_prompt = gr.Textbox( | |
label="Class Prompt", | |
info="The prompt that will be used to generate your class images", | |
) | |
with gr.Tab("images"): | |
class_images = gr.File( | |
file_types=["image"], | |
label="Upload your images", | |
file_count="multiple", | |
) | |
num_class_images = gr.Number( | |
label="Number of class images, if there are less images uploaded then the number you put here, additional images will be sampled with Class Prompt", | |
value=20, | |
) | |
train_text_encoder_ti = gr.Checkbox( | |
label="Do textual inversion", | |
value=True, | |
info="Will train a textual inversion embedding together with the LoRA. Increases quality significantly.", | |
) | |
with gr.Group(visible=True) as pivotal_tuning_params: | |
train_text_encoder_ti_frac = gr.Number( | |
label="Pivot Textual Inversion", | |
info="% of epochs to train textual inversion for", | |
value=0.5, | |
step=0.1, | |
) | |
num_new_tokens_per_abstraction = gr.Number( | |
label="Tokens to train", | |
info="Number of tokens to train in the textual inversion", | |
value=2, | |
minimum=1, | |
maximum=1024, | |
interactive=True, | |
) | |
with gr.Group(visible=False) as text_encoder_train_params: | |
train_text_encoder = gr.Checkbox( | |
label="Train Text Encoder", value=True | |
) | |
train_text_encoder_frac = gr.Number( | |
label="Pivot Text Encoder", | |
info="% of epochs to train the text encoder for", | |
value=0.8, | |
step=0.1, | |
) | |
text_encoder_learning_rate = gr.Number( | |
label="Text encoder learning rate", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.0000001, | |
value=1.0, | |
) | |
seed = gr.Number(label="Seed", value=42) | |
resolution = gr.Number( | |
label="Resolution", | |
info="Only square sizes are supported for now, the value will be width and height", | |
value=1024, | |
) | |
with gr.Accordion(open=False, label="Even more advanced options"): | |
with gr.Row(): | |
with gr.Column(): | |
num_train_epochs = gr.Number(label="num_train_epochs", value=1) | |
checkpointing_steps = gr.Number( | |
label="checkpointing_steps", value=5000 | |
) | |
prior_loss_weight = gr.Number(label="prior_loss_weight", value=1) | |
gradient_accumulation_steps = gr.Number( | |
label="gradient_accumulation_steps", value=1 | |
) | |
gradient_checkpointing = gr.Checkbox( | |
label="gradient_checkpointing", | |
info="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass", | |
value=True, | |
) | |
enable_xformers_memory_efficient_attention = gr.Checkbox( | |
label="enable_xformers_memory_efficient_attention" | |
) | |
adam_beta1 = gr.Number( | |
label="adam_beta1", value=0.9, minimum=0, maximum=1, step=0.01 | |
) | |
adam_beta2 = gr.Number( | |
label="adam_beta2", minimum=0, maximum=1, step=0.01, value=0.99 | |
) | |
prodigy_beta3 = gr.Number( | |
label="Prodigy Beta 3", | |
value=None, | |
step=0.01, | |
minimum=0, | |
maximum=1, | |
) | |
prodigy_decouple = gr.Checkbox(label="Prodigy Decouple") | |
adam_weight_decay = gr.Number( | |
label="Adam Weight Decay", | |
value=1e-04, | |
step=0.00001, | |
minimum=0, | |
maximum=1, | |
) | |
adam_weight_decay_text_encoder = gr.Number( | |
label="Adam Weight Decay Text Encoder", | |
value=None, | |
step=0.00001, | |
minimum=0, | |
maximum=1, | |
) | |
adam_epsilon = gr.Number( | |
label="Adam Epsilon", | |
value=1e-08, | |
step=0.00000001, | |
minimum=0, | |
maximum=1, | |
) | |
prodigy_use_bias_correction = gr.Checkbox( | |
label="Prodigy Use Bias Correction", value=True | |
) | |
prodigy_safeguard_warmup = gr.Checkbox( | |
label="Prodigy Safeguard Warmup", value=True | |
) | |
max_grad_norm = gr.Number( | |
label="Max Grad Norm", | |
value=1.0, | |
minimum=0.1, | |
maximum=10, | |
step=0.1, | |
) | |
with gr.Column(): | |
scale_lr = gr.Checkbox( | |
label="Scale learning rate", | |
info="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size", | |
) | |
lr_num_cycles = gr.Number(label="lr_num_cycles", value=1) | |
lr_scheduler = gr.Dropdown( | |
label="lr_scheduler", | |
choices=[ | |
"linear", | |
"cosine", | |
"cosine_with_restarts", | |
"polynomial", | |
"constant", | |
"constant_with_warmup", | |
], | |
value="constant", | |
) | |
lr_power = gr.Number( | |
label="lr_power", value=1.0, minimum=0.1, maximum=10 | |
) | |
lr_warmup_steps = gr.Number(label="lr_warmup_steps", value=0) | |
dataloader_num_workers = gr.Number( | |
label="Dataloader num workers", value=0, minimum=0, maximum=64 | |
) | |
local_rank = gr.Number(label="local_rank", value=-1) | |
token = gr.Textbox(label="Your Hugging Face write token", info="A Hugging Face write token you can obtain on the settings page.") | |
start = gr.Button("Start training", visible=False) | |
progress_area = gr.HTML() | |
output_components.insert(1, advanced) | |
output_components.insert(1, start) | |
use_snr_gamma.change( | |
lambda x: gr.update(visible=x), | |
inputs=use_snr_gamma, | |
outputs=snr_gamma, | |
queue=False, | |
) | |
with_prior_preservation.change( | |
lambda x: gr.update(visible=x), | |
inputs=with_prior_preservation, | |
outputs=prior_preservation_params, | |
queue=False, | |
) | |
train_text_encoder_ti.change( | |
lambda x: gr.update(visible=x), | |
inputs=train_text_encoder_ti, | |
outputs=pivotal_tuning_params, | |
queue=False, | |
).then( | |
lambda x: gr.update(visible=(not x)), | |
inputs=train_text_encoder_ti, | |
outputs=text_encoder_train_params, | |
queue=False, | |
) | |
train_text_encoder.change( | |
lambda x: [gr.update(visible=x), gr.update(visible=x)], | |
inputs=train_text_encoder, | |
outputs=[train_text_encoder_frac, text_encoder_learning_rate], | |
queue=False, | |
) | |
class_images.change( | |
lambda x: gr.update(value=len(x)), | |
inputs=class_images, | |
outputs=num_class_images, | |
queue=False | |
) | |
images.upload( | |
load_captioning, inputs=[images, concept_sentence], outputs=output_components | |
).then( | |
change_defaults, | |
inputs=[training_option, images], | |
outputs=[max_train_steps, repeats, lr_scheduler, lora_rank, with_prior_preservation, class_prompt, class_images] | |
) | |
images.change( | |
check_removed_and_restart, | |
inputs=[images], | |
outputs=[captioning_area, advanced, start], | |
) | |
training_option.change( | |
make_options_visible, | |
inputs=training_option, | |
outputs=[concept_sentence, image_upload], | |
) | |
start.click( | |
fn=create_dataset, | |
inputs=[images] + caption_list, | |
outputs=dataset_folder | |
).then( | |
fn=start_training, | |
inputs=[ | |
lora_name, | |
training_option, | |
concept_sentence, | |
optimizer, | |
use_snr_gamma, | |
snr_gamma, | |
mixed_precision, | |
learning_rate, | |
train_batch_size, | |
max_train_steps, | |
lora_rank, | |
repeats, | |
with_prior_preservation, | |
class_prompt, | |
class_images, | |
num_class_images, | |
train_text_encoder_ti, | |
train_text_encoder_ti_frac, | |
num_new_tokens_per_abstraction, | |
train_text_encoder, | |
train_text_encoder_frac, | |
text_encoder_learning_rate, | |
seed, | |
resolution, | |
num_train_epochs, | |
checkpointing_steps, | |
prior_loss_weight, | |
gradient_accumulation_steps, | |
gradient_checkpointing, | |
enable_xformers_memory_efficient_attention, | |
adam_beta1, | |
adam_beta2, | |
prodigy_beta3, | |
prodigy_decouple, | |
adam_weight_decay, | |
adam_weight_decay_text_encoder, | |
adam_epsilon, | |
prodigy_use_bias_correction, | |
prodigy_safeguard_warmup, | |
max_grad_norm, | |
scale_lr, | |
lr_num_cycles, | |
lr_scheduler, | |
lr_power, | |
lr_warmup_steps, | |
dataloader_num_workers, | |
local_rank, | |
dataset_folder, | |
token | |
], | |
outputs = progress_area | |
) | |
do_captioning.click( | |
fn=run_captioning, inputs=[images] + caption_list + [training_option], outputs=caption_list | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(share=True) |