File size: 4,628 Bytes
2eb58d1 199e379 84f6f2e 2eb58d1 84f6f2e 071944b a17b7c9 84f6f2e e9f0715 199e379 2eb58d1 4e01792 2eb58d1 071944b 2eb58d1 84f6f2e 94e174f 2eb58d1 94e174f 5517c09 e2596e5 09e1d9b 523a420 09e1d9b 523a420 09e1d9b 523a420 c0ceaaf 14dfe21 940a4d0 76dfd76 940a4d0 16489cb 940a4d0 6aa4b7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
import random
import os
import io, base64
from PIL import Image
import numpy
import shortuuid
latent = gr.Interface.load("spaces/multimodalart/latentdiffusion")
rudalle = gr.Interface.load("spaces/multimodalart/rudalle")
#print(rudalle)
#guided = gr.Interface.load("spaces/EleutherAI/clip-guided-diffusion")
#print(guided)
def text2image_latent(text,steps,width,height,images,diversity):
results = latent(text, steps, width, height, images, diversity)
image_paths = []
image_arrays = []
for image in results[1]:
image_str = image[0]
image_str = image_str.replace("data:image/png;base64,","")
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
img = Image.open(io.BytesIO(decoded_bytes))
#image_arrays.append(numpy.asarray(img))
url = shortuuid.uuid()
temp_dir = './tmp'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir, exist_ok=True)
image_path = f'{temp_dir}/{url}.png'
img.save(f'{temp_dir}/{url}.png')
image_paths.append(image_path)
return(results[0],image_paths)
def text2image_rudalle(text,aspect,model):
image = rudalle(text,aspect,model)[0]
return(image)
#def text2image_guided(text):
# image = guided(text, None, 10, 600, 0, 0, 0, random.randint(0,2147483647), None, 50, 32)
# print(image)
# image = image[0]
# return(image)
css_mt = {"margin-top": "1em"}
empty = gr.outputs.HTML()
mindseye = gr.Blocks()
with mindseye:
gr.Markdown("<h1>MindsEye Lite <small><small>run multiple text-to-image models in one place</small></small></h1><p>MindsEye Lite orchestrates multiple text-to-image Hugging Face Spaces in one convenient space, so you can try different models. This work carries the spirit of <a href='https://multimodal.art/mindseye' target='_blank'>MindsEye Beta</a>, a tool to run multiple models with a single UI, but adjusted to the current hardware limitations of Spaces. MindsEye Lite was created by <a style='color: rgb(99, 102, 241);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a>, keep up with the <a style='color: rgb(99, 102, 241);' href='https://multimodal.art/news' target='_blank'>latest multimodal ai art news here</a> and consider <a style='color: rgb(99, 102, 241);' href='https://www.patreon.com/multimodalart' target='_blank'>supporting us on Patreon</a></div></p>")
#gr.Markdown("<style>.mx-auto.container .gr-form-gap {flex-direction: row; gap: calc(1rem * calc(1 - var(--tw-space-y-reverse)));} .mx-auto.container .gr-form-gap .flex-col, .mx-auto.container .gr-form-gap .gr-box{width: 100%}</style>")
text = gr.inputs.Textbox(placeholder="Try writing something..", label="Prompt", default="A mecha robot in a favela")
with gr.Column():
with gr.Row():
with gr.Tabs():
with gr.TabItem("Latent Diffusion"):
steps = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1)
#width = gr.inputs.Slider(label="Width", default=256, step=32, maximum=256, minimum=32)
#height = gr.inputs.Slider(label="Height", default=256, step=32, maximum = 256, minimum=32)
#images = gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4)
#diversity = gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0)
#get_image_latent = gr.Button("Generate Image",css=css_mt)
#
# with gr.TabItem("ruDALLE"):
# aspect = gr.inputs.Radio(label="Aspect Ratio", choices=["Square", "Horizontal", "Vertical"],default="Square")
# model = gr.inputs.Dropdown(label="Model", choices=["Surrealism","Realism", "Emoji"], default="Surrealism")
# get_image_rudalle = gr.Button("Generate Image",css=css_mt)
#with gr.Row():
#with gr.Tabs():
# with gr.TabItem("Image output"):
# image = gr.outputs.Image()
# with gr.TabItem("Gallery output"):
# gallery = gr.Gallery(label="Individual images")
#get_image_latent.click(text2image_latent, inputs=[text,steps,width,height,images,diversity], outputs=[image,gallery])
#get_image_rudalle.click(text2image_rudalle, inputs=[text,aspect,model], outputs=image)
mindseye.launch(share=False) |