Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import os, pdb | |
import argparse | |
import numpy as np | |
import torch | |
import requests | |
from PIL import Image | |
from transformers import AutoProcessor, BlipForConditionalGeneration | |
from diffusers import UNet2DConditionModel, DDIMScheduler | |
from src.utils.ddim_inv import DDIMInversion | |
from src.utils.scheduler import DDIMInverseScheduler | |
from src.utils.edit_directions import construct_direction, construct_direction_prompts | |
from src.utils.edit_pipeline import EditingPipeline | |
#from src.make_edit_direction import load_sentence_embeddings | |
torch_dtype = torch.float16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
blip_model_large.to(device) | |
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet", torch_dtype=torch.float16).to(device) | |
pipe_inversion = DDIMInversion.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype, unet=unet).to(device) | |
pipe_inversion.scheduler = DDIMInverseScheduler.from_config(pipe_inversion.scheduler.config) | |
pipe_editing = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype, unet=unet).to(device) | |
pipe_editing.scheduler = DDIMScheduler.from_config(pipe_editing.scheduler.config) | |
def load_sentence_embeddings(l_sentences, tokenizer, text_encoder, device="cuda"): | |
with torch.no_grad(): | |
l_embeddings = [] | |
for sent in l_sentences: | |
text_inputs = tokenizer( | |
sent, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0] | |
l_embeddings.append(prompt_embeds) | |
return torch.cat(l_embeddings, dim=0).mean(dim=0).unsqueeze(0) | |
def generate_caption(processor, model, image, tokenizer=None, use_float_16=False): | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
if use_float_16: | |
inputs = inputs.to(torch.float16) | |
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) | |
if tokenizer is not None: | |
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
else: | |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_caption | |
def generate_inversion(prompt, image, num_ddim_steps=50): | |
image = image.resize((512,512), Image.Resampling.LANCZOS) | |
x_inv, x_inv_image, x_dec_img = pipe_inversion( | |
prompt, | |
guidance_scale=1, | |
num_inversion_steps=num_ddim_steps, | |
img=image, | |
torch_dtype=torch_dtype | |
) | |
return x_inv[0] | |
def swap_blip_model_cpu_gpu(device_to): | |
if torch.cuda.is_available(): | |
blip_model_large.to(device_to) | |
def run_captioning(image): | |
caption = generate_caption(blip_processor_large, blip_model_large, image).strip() | |
swap_blip_model_cpu_gpu("cpu") | |
return caption | |
def run_editing(image, original_prompt, edit_prompt, ddim_steps=50, xa_guidance=0.1, negative_guidance_scale=5.0): | |
inverted_noise = generate_inversion(original_prompt, image) | |
source_prompt_embeddings = load_sentence_embeddings([original_prompt], pipe_editing.tokenizer, pipe_editing.text_encoder, device="cuda") | |
target_prompt_embeddings = load_sentence_embeddings([edit_prompt], pipe_editing.tokenizer, pipe_editing.text_encoder, device="cuda") | |
rec_pil, edit_pil = pipe_editing( | |
original_prompt, | |
num_inference_steps=ddim_steps, | |
x_in=inverted_noise.unsqueeze(0), | |
edit_dir=construct_direction_prompts(source_prompt_embeddings,target_prompt_embeddings), | |
guidance_amount=xa_guidance, | |
guidance_scale=negative_guidance_scale, | |
negative_prompt=original_prompt # use the unedited prompt for the negative prompt | |
) | |
return edit_pil[0] | |
def run_editing_quality(image, item_from, item_from_other, item_to, item_to_other, ddim_steps=50, xa_guidance=0.1, negative_guidance_scale=5.0): | |
caption = generate_caption(blip_processor_large, blip_model_large, image).strip() | |
item_from_selected = item_from if item_from_other == "" else item_from_other | |
item_to_selected = item_to if item_to_other == "" else item_to_other | |
inverted_noise = generate_inversion(caption, image) | |
emb_dir = f"assets/embeddings_sd_1.4" | |
embs_a = torch.load(os.path.join(emb_dir, f"{item_from_selected}.pt")) | |
embs_b = torch.load(os.path.join(emb_dir, f"{item_to_selected}.pt")) | |
edit_dir = (embs_b.mean(0)-embs_a.mean(0)).unsqueeze(0) | |
rec_pil, edit_pil = pipe_editing( | |
original_prompt, | |
num_inference_steps=ddim_steps, | |
x_in=inverted_noise.unsqueeze(0), | |
edit_dir=edit_dir, | |
guidance_amount=xa_guidance, | |
guidance_scale=negative_guidance_scale, | |
negative_prompt=original_prompt # use the unedited prompt for the negative prompt | |
) | |
return edit_pil[0] | |
css = ''' | |
#generate_button{height: 100%} | |
#quality_description{text-align: center; margin-top: 1em} | |
''' | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown('''## Edit with Words - Pix2Pix Zero demo | |
Upload an image to edit it. You can try `Fast mode` with prompts, or `Quality mode` with custom edit directions. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload your image", type="pil", shape=(512, 512)) | |
with gr.Tabs(): | |
with gr.TabItem("Fast mode"): | |
with gr.Row(): | |
with gr.Column(scale=10): | |
original_prompt = gr.Textbox(label="Image description - either type a caption for the image above or generate it") | |
with gr.Column(scale=1, min_width=180): | |
btn_caption = gr.Button("Generate caption", elem_id="generate_button") | |
edit_prompt = gr.Textbox(label="Edit prompt - what would you like to edit in the image above. Change one thing at a time") | |
btn_edit_fast = gr.Button("Edit Image") | |
with gr.TabItem("Quality mode"): | |
gr.Markdown("Quality mode temporarely set to only 4 categories. Soon to be dynamic, so you can create your own edit directions.", elem_id="quality_description") | |
with gr.Row(): | |
with gr.Column(): | |
item_from = gr.Dropdown(label="What to identify in your image", choices=["cat", "dog", "horse", "zebra"], value="cat") | |
item_from_other = gr.Textbox(visible=False, label="Type what to identify on your image") | |
item_from.change(lambda choice: gr.Dropdown.update(visible=choice=="Other"), item_from, item_from_other) | |
with gr.Column(): | |
item_to = gr.Dropdown(label="What to replace what you identified for", choices=["cat", "dog", "horse", "zebra"], value="dog") | |
item_to_other = gr.Textbox(visible=False, label="Type what to replace what you identified for") | |
item_to.change(lambda choice: gr.Dropdown.update(visible=choice=="Other"), item_to, item_to_other) | |
btn_edit_quality = gr.Button("Edit Image") | |
with gr.Column(): | |
image_output = gr.Image(label="Image with edits",type="pil",shape=(512, 512)) | |
btn_caption.click(fn=run_captioning, inputs=image, outputs=original_prompt) | |
btn_edit_fast.click(fn=run_editing, inputs=[image, original_prompt, edit_prompt], outputs=[image_output]) | |
btn_edit_quality.click(fn=run_editing_quality, inputs=[image, item_from, item_from_other, item_to, item_to_other], outputs=[image_output]) | |
demo.launch() |