Spaces:
Runtime error
Runtime error
Commit
·
98b9d34
1
Parent(s):
d40f6d4
Demo first version
Browse files- app.py +142 -14
- src/utils/edit_directions.py +3 -0
app.py
CHANGED
@@ -9,24 +9,152 @@ import torch
|
|
9 |
import requests
|
10 |
from PIL import Image
|
11 |
|
12 |
-
from
|
13 |
|
|
|
14 |
from src.utils.ddim_inv import DDIMInversion
|
15 |
from src.utils.scheduler import DDIMInverseScheduler
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
--input_image "assets/test_images/cats/cat_1.png" \
|
20 |
-
--results_folder "output/test_cat"
|
21 |
-
''')
|
22 |
-
return f"Inverted!"
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
demo.launch()
|
|
|
9 |
import requests
|
10 |
from PIL import Image
|
11 |
|
12 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration
|
13 |
|
14 |
+
from diffusers import UNet2DConditionModel, DDIMScheduler
|
15 |
from src.utils.ddim_inv import DDIMInversion
|
16 |
from src.utils.scheduler import DDIMInverseScheduler
|
17 |
+
from src.utils.edit_directions import construct_direction, construct_direction_prompts
|
18 |
+
from src.utils.edit_pipeline import EditingPipeline
|
19 |
+
#from src.make_edit_direction import load_sentence_embeddings
|
20 |
|
21 |
+
torch_dtype = torch.float16
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
25 |
+
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
26 |
+
blip_model_large.to(device)
|
27 |
+
|
28 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet", torch_dtype=torch.float16).to(device)
|
29 |
+
pipe_inversion = DDIMInversion.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype, unet=unet).to(device)
|
30 |
+
pipe_inversion.scheduler = DDIMInverseScheduler.from_config(pipe_inversion.scheduler.config)
|
31 |
+
|
32 |
+
pipe_editing = EditingPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch_dtype, unet=unet).to(device)
|
33 |
+
pipe_editing.scheduler = DDIMScheduler.from_config(pipe_editing.scheduler.config)
|
34 |
+
|
35 |
+
def load_sentence_embeddings(l_sentences, tokenizer, text_encoder, device="cuda"):
|
36 |
+
with torch.no_grad():
|
37 |
+
l_embeddings = []
|
38 |
+
for sent in l_sentences:
|
39 |
+
text_inputs = tokenizer(
|
40 |
+
sent,
|
41 |
+
padding="max_length",
|
42 |
+
max_length=tokenizer.model_max_length,
|
43 |
+
truncation=True,
|
44 |
+
return_tensors="pt",
|
45 |
+
)
|
46 |
+
text_input_ids = text_inputs.input_ids
|
47 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
|
48 |
+
l_embeddings.append(prompt_embeds)
|
49 |
+
return torch.cat(l_embeddings, dim=0).mean(dim=0).unsqueeze(0)
|
50 |
+
|
51 |
+
def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
|
52 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
53 |
+
|
54 |
+
if use_float_16:
|
55 |
+
inputs = inputs.to(torch.float16)
|
56 |
+
|
57 |
+
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
58 |
|
59 |
+
if tokenizer is not None:
|
60 |
+
generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
61 |
+
else:
|
62 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
63 |
+
|
64 |
+
return generated_caption
|
65 |
+
|
66 |
+
def generate_inversion(prompt, image, num_ddim_steps=50):
|
67 |
+
image = image.resize((512,512), Image.Resampling.LANCZOS)
|
68 |
+
x_inv, x_inv_image, x_dec_img = pipe_inversion(
|
69 |
+
prompt,
|
70 |
+
guidance_scale=1,
|
71 |
+
num_inversion_steps=num_ddim_steps,
|
72 |
+
img=image,
|
73 |
+
torch_dtype=torch_dtype
|
74 |
+
)
|
75 |
+
return x_inv[0]
|
76 |
+
|
77 |
+
def swap_blip_model_cpu_gpu(device_to):
|
78 |
+
if torch.cuda.is_available():
|
79 |
+
blip_model_large.to(device_to)
|
80 |
+
|
81 |
+
def run_captioning(image):
|
82 |
+
caption = generate_caption(blip_processor_large, blip_model_large, image).strip()
|
83 |
+
swap_blip_model_cpu_gpu("cpu")
|
84 |
+
return caption
|
85 |
+
|
86 |
+
def run_editing(image, original_prompt, edit_prompt, ddim_steps=50, xa_guidance=0.1, negative_guidance_scale=5.0):
|
87 |
+
inverted_noise = generate_inversion(original_prompt, image)
|
88 |
+
source_prompt_embeddings = load_sentence_embeddings([original_prompt], pipe_editing.tokenizer, pipe_editing.text_encoder, device="cuda")
|
89 |
+
target_prompt_embeddings = load_sentence_embeddings([edit_prompt], pipe_editing.tokenizer, pipe_editing.text_encoder, device="cuda")
|
90 |
+
rec_pil, edit_pil = pipe_editing(
|
91 |
+
original_prompt,
|
92 |
+
num_inference_steps=ddim_steps,
|
93 |
+
x_in=inverted_noise.unsqueeze(0),
|
94 |
+
edit_dir=construct_direction_prompts(source_prompt_embeddings,target_prompt_embeddings),
|
95 |
+
guidance_amount=xa_guidance,
|
96 |
+
guidance_scale=negative_guidance_scale,
|
97 |
+
negative_prompt=original_prompt # use the unedited prompt for the negative prompt
|
98 |
+
)
|
99 |
+
return edit_pil[0]
|
100 |
+
|
101 |
+
def run_editing_quality(image, item_from, item_from_other, item_to, item_to_other, ddim_steps=50, xa_guidance=0.1, negative_guidance_scale=5.0):
|
102 |
+
caption = generate_caption(blip_processor_large, blip_model_large, image).strip()
|
103 |
+
item_from_selected = item_from if item_from_other == "" else item_from_other
|
104 |
+
item_to_selected = item_to if item_to_other == "" else item_to_other
|
105 |
+
inverted_noise = generate_inversion(caption, image)
|
106 |
+
emb_dir = f"assets/embeddings_sd_1.4"
|
107 |
+
embs_a = torch.load(os.path.join(emb_dir, f"{item_from_selected}.pt"))
|
108 |
+
embs_b = torch.load(os.path.join(emb_dir, f"{item_to_selected}.pt"))
|
109 |
+
edit_dir = (embs_b.mean(0)-embs_a.mean(0)).unsqueeze(0)
|
110 |
+
rec_pil, edit_pil = pipe_editing(
|
111 |
+
original_prompt,
|
112 |
+
num_inference_steps=ddim_steps,
|
113 |
+
x_in=inverted_noise.unsqueeze(0),
|
114 |
+
edit_dir=edit_dir,
|
115 |
+
guidance_amount=xa_guidance,
|
116 |
+
guidance_scale=negative_guidance_scale,
|
117 |
+
negative_prompt=original_prompt # use the unedited prompt for the negative prompt
|
118 |
+
)
|
119 |
+
return edit_pil[0]
|
120 |
+
css = '''
|
121 |
+
#generate_button{height: 100%}
|
122 |
+
#quality_description{text-align: center; margin-top: 1em}
|
123 |
+
'''
|
124 |
+
with gr.Blocks(css=css) as demo:
|
125 |
+
gr.Markdown('''## Edit with Words - Pix2Pix Zero demo
|
126 |
+
Upload an image to edit it. You can try `Fast mode` with prompts, or `Quality mode` with custom edit directions.
|
127 |
+
''')
|
128 |
+
with gr.Row():
|
129 |
+
with gr.Column():
|
130 |
+
image = gr.Image(label="Upload your image", type="pil", shape=(512, 512))
|
131 |
+
with gr.Tabs():
|
132 |
+
with gr.TabItem("Fast mode"):
|
133 |
+
with gr.Row():
|
134 |
+
with gr.Column(scale=10):
|
135 |
+
original_prompt = gr.Textbox(label="Image description - either type a caption for the image above or generate it")
|
136 |
+
with gr.Column(scale=1, min_width=180):
|
137 |
+
btn_caption = gr.Button("Generate caption", elem_id="generate_button")
|
138 |
+
edit_prompt = gr.Textbox(label="Edit prompt - what would you like to edit in the image above. Change one thing at a time")
|
139 |
+
btn_edit_fast = gr.Button("Edit Image")
|
140 |
+
with gr.TabItem("Quality mode"):
|
141 |
+
gr.Markdown("Quality mode temporarely set to only 4 categories. Soon to be dynamic, so you can create your own edit directions.", elem_id="quality_description")
|
142 |
+
with gr.Row():
|
143 |
+
with gr.Column():
|
144 |
+
item_from = gr.Dropdown(label="What to identify in your image", choices=["cat", "dog", "horse", "zebra"], value="cat")
|
145 |
+
item_from_other = gr.Textbox(visible=False, label="Type what to identify on your image")
|
146 |
+
item_from.change(lambda choice: gr.Dropdown.update(visible=choice=="Other"), item_from, item_from_other)
|
147 |
+
with gr.Column():
|
148 |
+
item_to = gr.Dropdown(label="What to replace what you identified for", choices=["cat", "dog", "horse", "zebra"], value="dog")
|
149 |
+
item_to_other = gr.Textbox(visible=False, label="Type what to replace what you identified for")
|
150 |
+
item_to.change(lambda choice: gr.Dropdown.update(visible=choice=="Other"), item_to, item_to_other)
|
151 |
+
btn_edit_quality = gr.Button("Edit Image")
|
152 |
+
|
153 |
+
with gr.Column():
|
154 |
+
image_output = gr.Image(label="Image with edits",type="pil",shape=(512, 512))
|
155 |
+
|
156 |
+
btn_caption.click(fn=run_captioning, inputs=image, outputs=original_prompt)
|
157 |
+
|
158 |
+
btn_edit_fast.click(fn=run_editing, inputs=[image, original_prompt, edit_prompt], outputs=[image_output])
|
159 |
+
btn_edit_quality.click(fn=run_editing_quality, inputs=[image, item_from, item_from_other, item_to, item_to_other], outputs=[image_output])
|
160 |
demo.launch()
|
src/utils/edit_directions.py
CHANGED
@@ -27,3 +27,6 @@ def construct_direction(task_name):
|
|
27 |
return (embs_b.mean(0)-embs_a.mean(0)).unsqueeze(0)
|
28 |
else:
|
29 |
raise NotImplementedError
|
|
|
|
|
|
|
|
27 |
return (embs_b.mean(0)-embs_a.mean(0)).unsqueeze(0)
|
28 |
else:
|
29 |
raise NotImplementedError
|
30 |
+
|
31 |
+
def construct_direction_prompts(source_prompt_embeddings, target_prompt_embeddings):
|
32 |
+
return((target_prompt_embeddings.mean(0)-source_prompt_embeddings.mean(0)).unsqueeze(0))
|