File size: 19,462 Bytes
b720739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from huggingface_hub import snapshot_download, hf_hub_download

snapshot_download(
    repo_id="Wan-AI/Wan2.1-T2V-1.3B",
    local_dir="wan_models/Wan2.1-T2V-1.3B",
    local_dir_use_symlinks=False,
    resume_download=True,
    repo_type="model" 
)

hf_hub_download(
    repo_id="gdhe17/Self-Forcing",
    filename="checkpoints/self_forcing_dmd.pt",
    local_dir=".",              
    local_dir_use_symlinks=False 
)

import os
import re
import random
import argparse
import hashlib
import urllib.request
from PIL import Image
import spaces
import numpy as np
import torch
import gradio as gr
from omegaconf import OmegaConf
from tqdm import tqdm
import imageio # Added for final video rendering

# FastRTC imports
from fastrtc import WebRTC, get_turn_credentials
from fastrtc.utils import AdditionalOutputs, CloseStream

# Original project imports
from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
from demo_utils.memory import gpu, get_cuda_free_memory_gb, DynamicSwapInstaller

# --- Argument Parsing ---
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with FastRTC")
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.")
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
args = parser.parse_args()

# --- Global Setup & Model Loading ---
print(f"CUDA device: {gpu}")
print(f'Initial Free VRAM: {get_cuda_free_memory_gb(gpu):.2f} GB')
LOW_MEMORY = get_cuda_free_memory_gb(gpu) < 40

# Load configs
try:
    config = OmegaConf.load(args.config_path)
    default_config = OmegaConf.load("configs/default_config.yaml")
    config = OmegaConf.merge(default_config, config)
except FileNotFoundError as e:
    print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
    exit(1)

# Initialize Models
print("Initializing models...")
text_encoder = WanTextEncoder()
transformer = WanDiffusionWrapper(is_causal=True)

try:
    state_dict = torch.load(args.checkpoint_path, map_location="cpu")
    transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
except FileNotFoundError as e:
    print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
    exit(1)

# Prepare models for inference
text_encoder.eval().to(dtype=torch.bfloat16).requires_grad_(False)
transformer.eval().to(dtype=torch.float16).requires_grad_(False)

if LOW_MEMORY:
    print("Low memory mode enabled. Using dynamic model swapping.")
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    text_encoder.to(gpu)
transformer.to(gpu)

# --- VAE Decoder Management ---
APP_STATE = {
    "torch_compile_applied": False,
    "fp8_applied": False,
    "current_use_taehv": False,
    "current_vae_decoder": None,
}

def initialize_vae_decoder(use_taehv=False, use_trt=False):
    global APP_STATE
    
    if use_trt:
        from demo_utils.vae import VAETRTWrapper
        print("Initializing TensorRT VAE Decoder...")
        vae_decoder = VAETRTWrapper()
        APP_STATE["current_use_taehv"] = False
    elif use_taehv:
        print("Initializing TAEHV VAE Decoder...")
        from demo_utils.taehv import TAEHV
        taehv_checkpoint_path = "checkpoints/taew2_1.pth"
        if not os.path.exists(taehv_checkpoint_path):
            print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
            os.makedirs("checkpoints", exist_ok=True)
            download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
            try:
                urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
            except Exception as e:
                raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
        
        class DotDict(dict): __getattr__ = dict.get
        
        class TAEHVDiffusersWrapper(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.dtype = torch.float16
                self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
                self.config = DotDict(scaling_factor=1.0)
            def decode(self, latents, return_dict=None):
                return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
        
        vae_decoder = TAEHVDiffusersWrapper()
        APP_STATE["current_use_taehv"] = True
    else:
        print("Initializing Default VAE Decoder...")
        vae_decoder = VAEDecoderWrapper()
        try:
            vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu")
            decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
            vae_decoder.load_state_dict(decoder_state_dict)
        except FileNotFoundError:
            print("Warning: Default VAE weights not found.")
        APP_STATE["current_use_taehv"] = False

    vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
    APP_STATE["current_vae_decoder"] = vae_decoder
    print(f"βœ… VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")

# Initialize with default VAE
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)

# --- Additional Outputs Handler ---
def handle_additional_outputs(status_html_update, video_update, webrtc_output):
    return status_html_update, video_update, webrtc_output

# --- FastRTC Video Generation Handler ---
@torch.no_grad()
@spaces.GPU
def video_generation_handler(prompt, seed, enable_torch_compile, enable_fp8, use_taehv, progress=gr.Progress()):
    """
    Generator function that yields BGR NumPy frames for real-time streaming.
    Returns cleanly when done - no infinite loops.
    """
    global APP_STATE

    if seed == -1: 
        seed = random.randint(0, 2**32 - 1)
    
    print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}")

    # --- Model & Pipeline Configuration ---
    if use_taehv != APP_STATE["current_use_taehv"]:
        print(f"πŸ”„ Switching VAE to {'TAEHV' if use_taehv else 'Default VAE'}")
        initialize_vae_decoder(use_taehv=use_taehv, use_trt=args.trt)
    
    pipeline = CausalInferencePipeline(
        config, device=gpu, generator=transformer, text_encoder=text_encoder, 
        vae=APP_STATE["current_vae_decoder"]
    )
    
    if enable_fp8 and not APP_STATE["fp8_applied"]:
        print("⚑ Applying FP8 Quantization...")
        from torchao.quantization.quant_api import quantize_, Float8DynamicActivationFloat8Weight, PerTensor
        quantize_(pipeline.generator.model, Float8DynamicActivationFloat8Weight(granularity=PerTensor()))
        APP_STATE["fp8_applied"] = True

    if enable_torch_compile and not APP_STATE["torch_compile_applied"]:
        print("πŸ”₯ Applying torch.compile (this may take a few minutes)...")
        pipeline.generator.model = torch.compile(pipeline.generator.model, mode="max-autotune-no-cudagraphs")
        if not use_taehv and not LOW_MEMORY and not args.trt:
            pipeline.vae.decoder = torch.compile(pipeline.vae.decoder, mode="max-autotune-no-cudagraphs")
        APP_STATE["torch_compile_applied"] = True

    print("πŸ”€ Encoding text prompt...")
    conditional_dict = text_encoder(text_prompts=[prompt])
    for key, value in conditional_dict.items():
        conditional_dict[key] = value.to(dtype=torch.float16)
    
    # --- Generation Loop ---
    rnd = torch.Generator(gpu).manual_seed(int(seed))
    pipeline._initialize_kv_cache(1, torch.float16, gpu)
    pipeline._initialize_crossattn_cache(1, torch.float16, gpu)
    noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)
    
    vae_cache, latents_cache = None, None
    if not APP_STATE["current_use_taehv"] and not args.trt:
        vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]
    
    num_blocks = 7
    current_start_frame = 0
    all_num_frames = [pipeline.num_frame_per_block] * num_blocks
    
    total_frames_yielded = 0
    all_frames_for_video = [] # To collect frames for final video
    
    for idx, current_num_frames in enumerate(all_num_frames):
        print(f"πŸ“¦ Processing block {idx+1}/{num_blocks} with {current_num_frames} frames")
        
        noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]

        for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
            timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
            _, denoised_pred = pipeline.generator(
                noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
                timestep=timestep, kv_cache=pipeline.kv_cache1,
                crossattn_cache=pipeline.crossattn_cache,
                current_start=current_start_frame * pipeline.frame_seq_length
            )
            if step_idx < len(pipeline.denoising_step_list) - 1:
                next_timestep = pipeline.denoising_step_list[step_idx + 1]
                noisy_input = pipeline.scheduler.add_noise(
                    denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
                    next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
                ).unflatten(0, denoised_pred.shape[:2])

        if idx < len(all_num_frames) - 1:
            pipeline.generator(
                noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
                timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
                crossattn_cache=pipeline.crossattn_cache,
                current_start=current_start_frame * pipeline.frame_seq_length,
            )

        # Decode to pixels
        if args.trt:
            pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
        elif APP_STATE["current_use_taehv"]:
            if latents_cache is None: 
                latents_cache = denoised_pred
            else:
                denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
                latents_cache = denoised_pred[:, -3:]
            pixels = pipeline.vae.decode(denoised_pred)
        else:
            pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
            
        # Handle frame skipping for first block
        if idx == 0 and not args.trt: 
            pixels = pixels[:, 3:]
        elif APP_STATE["current_use_taehv"] and idx > 0: 
            pixels = pixels[:, 12:]

        print(f"πŸ“Ή Decoded pixels shape: {pixels.shape}")
        
        # Yield individual frames WITH status updates
        for frame_idx in range(pixels.shape[1]):
            frame_tensor = pixels[0, frame_idx]  # Get single frame [C, H, W]
            
            # Normalize from [-1, 1] to [0, 255]
            frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
            frame_np = frame_np.to(torch.uint8).cpu().numpy()
            
            # Convert from CHW to HWC format
            frame_np = np.transpose(frame_np, (1, 2, 0))  # CHW -> HWC
            
            all_frames_for_video.append(frame_np)

            # Convert RGB to BGR for FastRTC (OpenCV format)
            frame_bgr = frame_np[:, :, ::-1]  # RGB -> BGR
            
            total_frames_yielded += 1
            print(f"πŸ“Ί Yielding frame {total_frames_yielded}: shape {frame_bgr.shape}, dtype {frame_bgr.dtype}")
            
            # Calculate progress
            total_expected_frames = num_blocks * pipeline.num_frame_per_block
            current_frame_count = (idx * pipeline.num_frame_per_block) + frame_idx + 1
            frame_progress = 100 * (current_frame_count / total_expected_frames)

            # --- REVISED HTML START ---
            if frame_idx == pixels.shape[1] - 1 and idx + 1 == num_blocks: # last frame
                status_html = (
                    f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>"
                    f"  <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>πŸŽ‰ Generation Complete!</h4>"
                    f"  <p style='margin: 0; color: #0f5132;'>"
                    f"    Total frames: {total_frames_yielded}. The final video is now available."
                    f"  </p>"
                    f"</div>"
                )
                
                print("πŸ’Ύ Saving final rendered video...")
                video_update = gr.update() # Default to no-op
                try:
                    video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4"
                    imageio.mimwrite(video_path, all_frames_for_video, fps=15, quality=8)
                    print(f"βœ… Video saved to {video_path}")
                    video_update = gr.update(value=video_path, visible=True)
                except Exception as e:
                    print(f"⚠️ Could not save final video: {e}")

                yield frame_bgr, AdditionalOutputs(status_html, video_update, gr.update(visible=False))
                yield CloseStream("πŸŽ‰ Video generation completed successfully!")
                return
            else:  # Regular frames - simpler status
                status_html = (
                    f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
                    f"  <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
                    # Correctly implemented progress bar
                    f"  <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
                    f"    <div style='width: {frame_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
                    f"  </div>"
                    f"  <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>"
                    f"    Block {idx+1}/{num_blocks} Β  | Β  Frame {total_frames_yielded} Β  | Β  {frame_progress:.1f}%"
                    f"  </p>"
                    f"</div>"
                )
            # --- REVISED HTML END ---

            yield frame_bgr, AdditionalOutputs(status_html, gr.update(visible=False), gr.update(visible=True))
            
        current_start_frame += current_num_frames
    
    print(f"βœ… Video generation completed! Total frames yielded: {total_frames_yielded}")
    
    # Signal completion
    yield CloseStream("πŸŽ‰ Video generation completed successfully!")

# --- Gradio UI Layout ---
with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing FastRTC Demo") as demo:
    gr.Markdown("# πŸš€ Self-Forcing Video Generation with FastRTC Streaming")
    gr.Markdown("*Real-time video generation streaming via WebRTC*")
    
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("### πŸ“ Configure Generation")
            with gr.Group():
                prompt = gr.Textbox(
                    label="Prompt", 
                    placeholder="A stylish woman walks down a Tokyo street...", 
                    lines=4,
                    value="A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage."
                )
                gr.Examples(
                    examples=[
                        "A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse.",
                        "A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something. Its eyes are wide and happy as it jogs forward, scanning the branches, flowers, and leaves.",
                        "A drone shot of a surfer riding a wave on a sunny day. The camera follows the surfer as they carve through the water.",
                    ],
                    inputs=[prompt]
                )
            
            with gr.Row():
                seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.")
                
            with gr.Accordion("βš™οΈ Performance Options", open=False):
                gr.Markdown("*These optimizations are applied once per session*")
                with gr.Row():
                    torch_compile_toggle = gr.Checkbox(label="πŸ”₯ torch.compile", value=False)
                    fp8_toggle = gr.Checkbox(label="⚑ FP8 Quantization", value=False, visible=not args.trt)
                    taehv_toggle = gr.Checkbox(label="⚑ TAEHV VAE", value=False, visible=not args.trt)
            
            start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg")
            
        with gr.Column(scale=3):
            gr.Markdown("### πŸ“Ί Live Video Stream")
            gr.Markdown("*Click 'Start Generation' to begin streaming*")
            
            try:
                rtc_config = get_turn_credentials()
            except Exception as e:
                print(f"Warning: Could not get TURN credentials: {e}")
                rtc_config = None
            
            webrtc_output = WebRTC(
                label="Generated Video Stream",
                modality="video",
                mode="receive",  # Server sends video to client
                height=480,
                width=832,
                rtc_configuration=rtc_config,
                elem_id="video_stream"
            )

            final_video = gr.Video(label="Final Rendered Video", visible=False, interactive=False)
            
            status_html = gr.HTML(
                value="<div style='text-align: center; padding: 20px; color: #666;'>Ready to start generation...</div>",
                label="Generation Status"
            )

            
        
    # Connect the generator to the WebRTC stream
    webrtc_output.stream(
        fn=video_generation_handler, 
        inputs=[prompt, seed, torch_compile_toggle, fp8_toggle, taehv_toggle],
        outputs=[webrtc_output],
        time_limit=300,  # 5 minutes max
        trigger=start_btn.click,
    )
    # MODIFIED: Handle additional outputs (status updates AND final video)
    webrtc_output.on_additional_outputs(
        fn=handle_additional_outputs,
        outputs=[status_html, final_video, webrtc_output]
    )

# --- Launch App ---
if __name__ == "__main__":
    if os.path.exists("gradio_tmp"):
        import shutil
        shutil.rmtree("gradio_tmp")
    os.makedirs("gradio_tmp", exist_ok=True)
    
    demo.queue().launch(
        server_name=args.host, 
        server_port=args.port, 
        share=args.share,
        show_error=True
    )