Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,462 Bytes
b720739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
from huggingface_hub import snapshot_download, hf_hub_download
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir="wan_models/Wan2.1-T2V-1.3B",
local_dir_use_symlinks=False,
resume_download=True,
repo_type="model"
)
hf_hub_download(
repo_id="gdhe17/Self-Forcing",
filename="checkpoints/self_forcing_dmd.pt",
local_dir=".",
local_dir_use_symlinks=False
)
import os
import re
import random
import argparse
import hashlib
import urllib.request
from PIL import Image
import spaces
import numpy as np
import torch
import gradio as gr
from omegaconf import OmegaConf
from tqdm import tqdm
import imageio # Added for final video rendering
# FastRTC imports
from fastrtc import WebRTC, get_turn_credentials
from fastrtc.utils import AdditionalOutputs, CloseStream
# Original project imports
from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
from demo_utils.memory import gpu, get_cuda_free_memory_gb, DynamicSwapInstaller
# --- Argument Parsing ---
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with FastRTC")
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.")
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
args = parser.parse_args()
# --- Global Setup & Model Loading ---
print(f"CUDA device: {gpu}")
print(f'Initial Free VRAM: {get_cuda_free_memory_gb(gpu):.2f} GB')
LOW_MEMORY = get_cuda_free_memory_gb(gpu) < 40
# Load configs
try:
config = OmegaConf.load(args.config_path)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)
except FileNotFoundError as e:
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
exit(1)
# Initialize Models
print("Initializing models...")
text_encoder = WanTextEncoder()
transformer = WanDiffusionWrapper(is_causal=True)
try:
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
except FileNotFoundError as e:
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
exit(1)
# Prepare models for inference
text_encoder.eval().to(dtype=torch.bfloat16).requires_grad_(False)
transformer.eval().to(dtype=torch.float16).requires_grad_(False)
if LOW_MEMORY:
print("Low memory mode enabled. Using dynamic model swapping.")
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
transformer.to(gpu)
# --- VAE Decoder Management ---
APP_STATE = {
"torch_compile_applied": False,
"fp8_applied": False,
"current_use_taehv": False,
"current_vae_decoder": None,
}
def initialize_vae_decoder(use_taehv=False, use_trt=False):
global APP_STATE
if use_trt:
from demo_utils.vae import VAETRTWrapper
print("Initializing TensorRT VAE Decoder...")
vae_decoder = VAETRTWrapper()
APP_STATE["current_use_taehv"] = False
elif use_taehv:
print("Initializing TAEHV VAE Decoder...")
from demo_utils.taehv import TAEHV
taehv_checkpoint_path = "checkpoints/taew2_1.pth"
if not os.path.exists(taehv_checkpoint_path):
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
os.makedirs("checkpoints", exist_ok=True)
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
try:
urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
except Exception as e:
raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
class DotDict(dict): __getattr__ = dict.get
class TAEHVDiffusersWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
self.dtype = torch.float16
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
self.config = DotDict(scaling_factor=1.0)
def decode(self, latents, return_dict=None):
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
vae_decoder = TAEHVDiffusersWrapper()
APP_STATE["current_use_taehv"] = True
else:
print("Initializing Default VAE Decoder...")
vae_decoder = VAEDecoderWrapper()
try:
vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu")
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
vae_decoder.load_state_dict(decoder_state_dict)
except FileNotFoundError:
print("Warning: Default VAE weights not found.")
APP_STATE["current_use_taehv"] = False
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
APP_STATE["current_vae_decoder"] = vae_decoder
print(f"β
VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")
# Initialize with default VAE
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
# --- Additional Outputs Handler ---
def handle_additional_outputs(status_html_update, video_update, webrtc_output):
return status_html_update, video_update, webrtc_output
# --- FastRTC Video Generation Handler ---
@torch.no_grad()
@spaces.GPU
def video_generation_handler(prompt, seed, enable_torch_compile, enable_fp8, use_taehv, progress=gr.Progress()):
"""
Generator function that yields BGR NumPy frames for real-time streaming.
Returns cleanly when done - no infinite loops.
"""
global APP_STATE
if seed == -1:
seed = random.randint(0, 2**32 - 1)
print(f"π¬ Starting video generation with prompt: '{prompt}' and seed: {seed}")
# --- Model & Pipeline Configuration ---
if use_taehv != APP_STATE["current_use_taehv"]:
print(f"π Switching VAE to {'TAEHV' if use_taehv else 'Default VAE'}")
initialize_vae_decoder(use_taehv=use_taehv, use_trt=args.trt)
pipeline = CausalInferencePipeline(
config, device=gpu, generator=transformer, text_encoder=text_encoder,
vae=APP_STATE["current_vae_decoder"]
)
if enable_fp8 and not APP_STATE["fp8_applied"]:
print("β‘ Applying FP8 Quantization...")
from torchao.quantization.quant_api import quantize_, Float8DynamicActivationFloat8Weight, PerTensor
quantize_(pipeline.generator.model, Float8DynamicActivationFloat8Weight(granularity=PerTensor()))
APP_STATE["fp8_applied"] = True
if enable_torch_compile and not APP_STATE["torch_compile_applied"]:
print("π₯ Applying torch.compile (this may take a few minutes)...")
pipeline.generator.model = torch.compile(pipeline.generator.model, mode="max-autotune-no-cudagraphs")
if not use_taehv and not LOW_MEMORY and not args.trt:
pipeline.vae.decoder = torch.compile(pipeline.vae.decoder, mode="max-autotune-no-cudagraphs")
APP_STATE["torch_compile_applied"] = True
print("π€ Encoding text prompt...")
conditional_dict = text_encoder(text_prompts=[prompt])
for key, value in conditional_dict.items():
conditional_dict[key] = value.to(dtype=torch.float16)
# --- Generation Loop ---
rnd = torch.Generator(gpu).manual_seed(int(seed))
pipeline._initialize_kv_cache(1, torch.float16, gpu)
pipeline._initialize_crossattn_cache(1, torch.float16, gpu)
noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)
vae_cache, latents_cache = None, None
if not APP_STATE["current_use_taehv"] and not args.trt:
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]
num_blocks = 7
current_start_frame = 0
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
total_frames_yielded = 0
all_frames_for_video = [] # To collect frames for final video
for idx, current_num_frames in enumerate(all_num_frames):
print(f"π¦ Processing block {idx+1}/{num_blocks} with {current_num_frames} frames")
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
_, denoised_pred = pipeline.generator(
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
timestep=timestep, kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length
)
if step_idx < len(pipeline.denoising_step_list) - 1:
next_timestep = pipeline.denoising_step_list[step_idx + 1]
noisy_input = pipeline.scheduler.add_noise(
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
if idx < len(all_num_frames) - 1:
pipeline.generator(
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length,
)
# Decode to pixels
if args.trt:
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
elif APP_STATE["current_use_taehv"]:
if latents_cache is None:
latents_cache = denoised_pred
else:
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
latents_cache = denoised_pred[:, -3:]
pixels = pipeline.vae.decode(denoised_pred)
else:
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
# Handle frame skipping for first block
if idx == 0 and not args.trt:
pixels = pixels[:, 3:]
elif APP_STATE["current_use_taehv"] and idx > 0:
pixels = pixels[:, 12:]
print(f"πΉ Decoded pixels shape: {pixels.shape}")
# Yield individual frames WITH status updates
for frame_idx in range(pixels.shape[1]):
frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W]
# Normalize from [-1, 1] to [0, 255]
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
frame_np = frame_np.to(torch.uint8).cpu().numpy()
# Convert from CHW to HWC format
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
all_frames_for_video.append(frame_np)
# Convert RGB to BGR for FastRTC (OpenCV format)
frame_bgr = frame_np[:, :, ::-1] # RGB -> BGR
total_frames_yielded += 1
print(f"πΊ Yielding frame {total_frames_yielded}: shape {frame_bgr.shape}, dtype {frame_bgr.dtype}")
# Calculate progress
total_expected_frames = num_blocks * pipeline.num_frame_per_block
current_frame_count = (idx * pipeline.num_frame_per_block) + frame_idx + 1
frame_progress = 100 * (current_frame_count / total_expected_frames)
# --- REVISED HTML START ---
if frame_idx == pixels.shape[1] - 1 and idx + 1 == num_blocks: # last frame
status_html = (
f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>"
f" <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>π Generation Complete!</h4>"
f" <p style='margin: 0; color: #0f5132;'>"
f" Total frames: {total_frames_yielded}. The final video is now available."
f" </p>"
f"</div>"
)
print("πΎ Saving final rendered video...")
video_update = gr.update() # Default to no-op
try:
video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4"
imageio.mimwrite(video_path, all_frames_for_video, fps=15, quality=8)
print(f"β
Video saved to {video_path}")
video_update = gr.update(value=video_path, visible=True)
except Exception as e:
print(f"β οΈ Could not save final video: {e}")
yield frame_bgr, AdditionalOutputs(status_html, video_update, gr.update(visible=False))
yield CloseStream("π Video generation completed successfully!")
return
else: # Regular frames - simpler status
status_html = (
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
# Correctly implemented progress bar
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
f" <div style='width: {frame_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
f" </div>"
f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>"
f" Block {idx+1}/{num_blocks} Β | Β Frame {total_frames_yielded} Β | Β {frame_progress:.1f}%"
f" </p>"
f"</div>"
)
# --- REVISED HTML END ---
yield frame_bgr, AdditionalOutputs(status_html, gr.update(visible=False), gr.update(visible=True))
current_start_frame += current_num_frames
print(f"β
Video generation completed! Total frames yielded: {total_frames_yielded}")
# Signal completion
yield CloseStream("π Video generation completed successfully!")
# --- Gradio UI Layout ---
with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing FastRTC Demo") as demo:
gr.Markdown("# π Self-Forcing Video Generation with FastRTC Streaming")
gr.Markdown("*Real-time video generation streaming via WebRTC*")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### π Configure Generation")
with gr.Group():
prompt = gr.Textbox(
label="Prompt",
placeholder="A stylish woman walks down a Tokyo street...",
lines=4,
value="A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage."
)
gr.Examples(
examples=[
"A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse.",
"A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something. Its eyes are wide and happy as it jogs forward, scanning the branches, flowers, and leaves.",
"A drone shot of a surfer riding a wave on a sunny day. The camera follows the surfer as they carve through the water.",
],
inputs=[prompt]
)
with gr.Row():
seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.")
with gr.Accordion("βοΈ Performance Options", open=False):
gr.Markdown("*These optimizations are applied once per session*")
with gr.Row():
torch_compile_toggle = gr.Checkbox(label="π₯ torch.compile", value=False)
fp8_toggle = gr.Checkbox(label="β‘ FP8 Quantization", value=False, visible=not args.trt)
taehv_toggle = gr.Checkbox(label="β‘ TAEHV VAE", value=False, visible=not args.trt)
start_btn = gr.Button("π¬ Start Generation", variant="primary", size="lg")
with gr.Column(scale=3):
gr.Markdown("### πΊ Live Video Stream")
gr.Markdown("*Click 'Start Generation' to begin streaming*")
try:
rtc_config = get_turn_credentials()
except Exception as e:
print(f"Warning: Could not get TURN credentials: {e}")
rtc_config = None
webrtc_output = WebRTC(
label="Generated Video Stream",
modality="video",
mode="receive", # Server sends video to client
height=480,
width=832,
rtc_configuration=rtc_config,
elem_id="video_stream"
)
final_video = gr.Video(label="Final Rendered Video", visible=False, interactive=False)
status_html = gr.HTML(
value="<div style='text-align: center; padding: 20px; color: #666;'>Ready to start generation...</div>",
label="Generation Status"
)
# Connect the generator to the WebRTC stream
webrtc_output.stream(
fn=video_generation_handler,
inputs=[prompt, seed, torch_compile_toggle, fp8_toggle, taehv_toggle],
outputs=[webrtc_output],
time_limit=300, # 5 minutes max
trigger=start_btn.click,
)
# MODIFIED: Handle additional outputs (status updates AND final video)
webrtc_output.on_additional_outputs(
fn=handle_additional_outputs,
outputs=[status_html, final_video, webrtc_output]
)
# --- Launch App ---
if __name__ == "__main__":
if os.path.exists("gradio_tmp"):
import shutil
shutil.rmtree("gradio_tmp")
os.makedirs("gradio_tmp", exist_ok=True)
demo.queue().launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_error=True
) |