File size: 11,058 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from typing import List
from einops import rearrange
import torch
import torch.nn as nn

from wan.modules.vae import AttentionBlock, CausalConv3d, RMS_norm, ResidualBlock, Upsample


class Resample(nn.Module):

    def __init__(self, dim, mode):
        assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d',
                        'downsample3d')
        super().__init__()
        self.dim = dim
        self.mode = mode
        self.cache_t = 2

        # layers
        if mode == 'upsample2d':
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2., 2.), mode='nearest'),
                nn.Conv2d(dim, dim // 2, 3, padding=1))
        elif mode == 'upsample3d':
            self.resample = nn.Sequential(
                Upsample(scale_factor=(2., 2.), mode='nearest'),
                nn.Conv2d(dim, dim // 2, 3, padding=1))
            self.time_conv = CausalConv3d(
                dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))

        elif mode == 'downsample2d':
            self.resample = nn.Sequential(
                nn.ZeroPad2d((0, 1, 0, 1)),
                nn.Conv2d(dim, dim, 3, stride=(2, 2)))
        elif mode == 'downsample3d':
            self.resample = nn.Sequential(
                nn.ZeroPad2d((0, 1, 0, 1)),
                nn.Conv2d(dim, dim, 3, stride=(2, 2)))
            self.time_conv = CausalConv3d(
                dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))

        else:
            self.resample = nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        b, c, t, h, w = x.size()
        if self.mode == 'upsample3d':
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = 'Rep'
                    feat_idx[0] += 1
                else:

                    cache_x = x[:, :, -self.cache_t:, :, :].clone()
                    if cache_x.shape[2] < 2 and feat_cache[
                            idx] is not None and feat_cache[idx] != 'Rep':
                        # cache last frame of last two chunk
                        cache_x = torch.cat([
                            feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                                cache_x.device), cache_x
                        ],
                            dim=2)
                    if cache_x.shape[2] < 2 and feat_cache[
                            idx] is not None and feat_cache[idx] == 'Rep':
                        cache_x = torch.cat([
                            torch.zeros_like(cache_x).to(cache_x.device),
                            cache_x
                        ],
                            dim=2)
                    if feat_cache[idx] == 'Rep':
                        x = self.time_conv(x)
                    else:
                        x = self.time_conv(x, feat_cache[idx])
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1

                    x = x.reshape(b, 2, c, t, h, w)
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
                                    3)
                    x = x.reshape(b, c, t * 2, h, w)
        t = x.shape[2]
        x = rearrange(x, 'b c t h w -> (b t) c h w')
        x = self.resample(x)
        x = rearrange(x, '(b t) c h w -> b c t h w', t=t)

        if self.mode == 'downsample3d':
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = x.clone()
                    feat_idx[0] += 1
                else:

                    cache_x = x[:, :, -1:, :, :].clone()
                    # if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx]!='Rep':
                    #     # cache last frame of last two chunk
                    #     cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

                    x = self.time_conv(
                        torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1
        return x

    def init_weight(self, conv):
        conv_weight = conv.weight
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        one_matrix = torch.eye(c1, c2)
        init_matrix = one_matrix
        nn.init.zeros_(conv_weight)
        # conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
        conv_weight.data[:, :, 1, 0, 0] = init_matrix  # * 0.5
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def init_weight2(self, conv):
        conv_weight = conv.weight.data
        nn.init.zeros_(conv_weight)
        c1, c2, t, h, w = conv_weight.size()
        init_matrix = torch.eye(c1 // 2, c2)
        # init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
        conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
        conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)


class VAEDecoderWrapper(nn.Module):
    def __init__(self):
        super().__init__()
        self.decoder = VAEDecoder3d()
        mean = [
            -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
            0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
        ]
        std = [
            2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
            3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
        ]
        self.mean = torch.tensor(mean, dtype=torch.float32)
        self.std = torch.tensor(std, dtype=torch.float32)
        self.z_dim = 16
        self.conv2 = CausalConv3d(self.z_dim, self.z_dim, 1)

    def forward(
            self,
            z: torch.Tensor,
            *feat_cache: List[torch.Tensor]
    ):
        # from [batch_size, num_frames, num_channels, height, width]
        # to [batch_size, num_channels, num_frames, height, width]
        z = z.permute(0, 2, 1, 3, 4)
        feat_cache = list(feat_cache)
        print("Length of feat_cache: ", len(feat_cache))

        device, dtype = z.device, z.dtype
        scale = [self.mean.to(device=device, dtype=dtype),
                 1.0 / self.std.to(device=device, dtype=dtype)]

        if isinstance(scale[0], torch.Tensor):
            z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
                1, self.z_dim, 1, 1, 1)
        else:
            z = z / scale[1] + scale[0]
        iter_ = z.shape[2]
        x = self.conv2(z)
        for i in range(iter_):
            if i == 0:
                out, feat_cache = self.decoder(
                    x[:, :, i:i + 1, :, :],
                    feat_cache=feat_cache)
            else:
                out_, feat_cache = self.decoder(
                    x[:, :, i:i + 1, :, :],
                    feat_cache=feat_cache)
                out = torch.cat([out, out_], 2)

        out = out.float().clamp_(-1, 1)
        # from [batch_size, num_channels, num_frames, height, width]
        # to [batch_size, num_frames, num_channels, height, width]
        out = out.permute(0, 2, 1, 3, 4)
        return out, feat_cache


class VAEDecoder3d(nn.Module):
    def __init__(self,
                 dim=96,
                 z_dim=16,
                 dim_mult=[1, 2, 4, 4],
                 num_res_blocks=2,
                 attn_scales=[],
                 temperal_upsample=[True, True, False],
                 dropout=0.0):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_upsample = temperal_upsample
        self.cache_t = 2
        self.decoder_conv_num = 32

        # dimensions
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
        scale = 1.0 / 2**(len(dim_mult) - 2)

        # init block
        self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)

        # middle blocks
        self.middle = nn.Sequential(
            ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
            ResidualBlock(dims[0], dims[0], dropout))

        # upsample blocks
        upsamples = []
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            if i == 1 or i == 2 or i == 3:
                in_dim = in_dim // 2
            for _ in range(num_res_blocks + 1):
                upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    upsamples.append(AttentionBlock(out_dim))
                in_dim = out_dim

            # upsample block
            if i != len(dim_mult) - 1:
                mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
                upsamples.append(Resample(out_dim, mode=mode))
                scale *= 2.0
        self.upsamples = nn.Sequential(*upsamples)

        # output blocks
        self.head = nn.Sequential(
            RMS_norm(out_dim, images=False), nn.SiLU(),
            CausalConv3d(out_dim, 3, 3, padding=1))

    def forward(
            self,
            x: torch.Tensor,
            feat_cache: List[torch.Tensor]
    ):
        feat_idx = [0]

        # conv1
        idx = feat_idx[0]
        cache_x = x[:, :, -self.cache_t:, :, :].clone()
        if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
            # cache last frame of last two chunk
            cache_x = torch.cat([
                feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                    cache_x.device), cache_x
            ],
                dim=2)
        x = self.conv1(x, feat_cache[idx])
        feat_cache[idx] = cache_x
        feat_idx[0] += 1

        # middle
        for layer in self.middle:
            if isinstance(layer, ResidualBlock) and feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        # upsamples
        for layer in self.upsamples:
            x = layer(x, feat_cache, feat_idx)

        # head
        for layer in self.head:
            if isinstance(layer, CausalConv3d) and feat_cache is not None:
                idx = feat_idx[0]
                cache_x = x[:, :, -self.cache_t:, :, :].clone()
                if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                    # cache last frame of last two chunk
                    cache_x = torch.cat([
                        feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
                            cache_x.device), cache_x
                    ],
                        dim=2)
                x = layer(x, feat_cache[idx])
                feat_cache[idx] = cache_x
                feat_idx[0] += 1
            else:
                x = layer(x)
        return x, feat_cache