File size: 3,109 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from typing import List
import torch

from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper


class BidirectionalInferencePipeline(torch.nn.Module):
    def __init__(
            self,
            args,
            device,
            generator=None,
            text_encoder=None,
            vae=None
    ):
        super().__init__()
        # Step 1: Initialize all models
        self.generator = WanDiffusionWrapper(
            **getattr(args, "model_kwargs", {}), is_causal=False) if generator is None else generator
        self.text_encoder = WanTextEncoder() if text_encoder is None else text_encoder
        self.vae = WanVAEWrapper() if vae is None else vae

        # Step 2: Initialize all bidirectional wan hyperparmeters
        self.scheduler = self.generator.get_scheduler()
        self.denoising_step_list = torch.tensor(
            args.denoising_step_list, dtype=torch.long, device=device)
        if self.denoising_step_list[-1] == 0:
            self.denoising_step_list = self.denoising_step_list[:-1]  # remove the zero timestep for inference
        if args.warp_denoising_step:
            timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32)))
            self.denoising_step_list = timesteps[1000 - self.denoising_step_list]

    def inference(self, noise: torch.Tensor, text_prompts: List[str]) -> torch.Tensor:
        """
        Perform inference on the given noise and text prompts.
        Inputs:
            noise (torch.Tensor): The input noise tensor of shape
                (batch_size, num_frames, num_channels, height, width).
            text_prompts (List[str]): The list of text prompts.
        Outputs:
            video (torch.Tensor): The generated video tensor of shape
                (batch_size, num_frames, num_channels, height, width). It is normalized to be in the range [0, 1].
        """
        conditional_dict = self.text_encoder(
            text_prompts=text_prompts
        )

        # initial point
        noisy_image_or_video = noise

        # use the last n-1 timesteps to simulate the generator's input
        for index, current_timestep in enumerate(self.denoising_step_list[:-1]):
            _, pred_image_or_video = self.generator(
                noisy_image_or_video=noisy_image_or_video,
                conditional_dict=conditional_dict,
                timestep=torch.ones(
                    noise.shape[:2], dtype=torch.long, device=noise.device) * current_timestep
            )  # [B, F, C, H, W]

            next_timestep = self.denoising_step_list[index + 1] * torch.ones(
                noise.shape[:2], dtype=torch.long, device=noise.device)

            noisy_image_or_video = self.scheduler.add_noise(
                pred_image_or_video.flatten(0, 1),
                torch.randn_like(pred_image_or_video.flatten(0, 1)),
                next_timestep.flatten(0, 1)
            ).unflatten(0, noise.shape[:2])

        video = self.vae.decode_to_pixel(pred_image_or_video)
        video = (video * 0.5 + 0.5).clamp(0, 1)
        return video