Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,155 Bytes
0fd2f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import numpy as np
import random
import torch
def set_seed(seed: int, deterministic: bool = False):
"""
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
Args:
seed (`int`):
The seed to set.
deterministic (`bool`, *optional*, defaults to `False`):
Whether to use deterministic algorithms where available. Can slow down training.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.use_deterministic_algorithms(True)
def merge_dict_list(dict_list):
if len(dict_list) == 1:
return dict_list[0]
merged_dict = {}
for k, v in dict_list[0].items():
if isinstance(v, torch.Tensor):
if v.ndim == 0:
merged_dict[k] = torch.stack([d[k] for d in dict_list], dim=0)
else:
merged_dict[k] = torch.cat([d[k] for d in dict_list], dim=0)
else:
# for non-tensor values, we just copy the value from the first item
merged_dict[k] = v
return merged_dict
|