File size: 24,457 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
"""
Demo for Self-Forcing.
"""

import os
import re
import random
import time
import base64
import argparse
import hashlib
import subprocess
import urllib.request
from io import BytesIO
from PIL import Image
import numpy as np
import torch
from omegaconf import OmegaConf
from flask import Flask, render_template, jsonify
from flask_socketio import SocketIO, emit
import queue
from threading import Thread, Event

from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
from demo_utils.utils import generate_timestamp
from demo_utils.memory import gpu, get_cuda_free_memory_gb, DynamicSwapInstaller, move_model_to_device_with_memory_preservation

# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=5001)
parser.add_argument('--host', type=str, default='0.0.0.0')
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt')
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml')
parser.add_argument('--trt', action='store_true')
args = parser.parse_args()

print(f'Free VRAM {get_cuda_free_memory_gb(gpu)} GB')
low_memory = get_cuda_free_memory_gb(gpu) < 40

# Load models
config = OmegaConf.load(args.config_path)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)

text_encoder = WanTextEncoder()

# Global variables for dynamic model switching
current_vae_decoder = None
current_use_taehv = False
fp8_applied = False
torch_compile_applied = False
global frame_number
frame_number = 0
anim_name = ""
frame_rate = 6

def initialize_vae_decoder(use_taehv=False, use_trt=False):
    """Initialize VAE decoder based on the selected option"""
    global current_vae_decoder, current_use_taehv

    if use_trt:
        from demo_utils.vae import VAETRTWrapper
        current_vae_decoder = VAETRTWrapper()
        return current_vae_decoder

    if use_taehv:
        from demo_utils.taehv import TAEHV
        # Check if taew2_1.pth exists in checkpoints folder, download if missing
        taehv_checkpoint_path = "checkpoints/taew2_1.pth"
        if not os.path.exists(taehv_checkpoint_path):
            print(f"taew2_1.pth not found in checkpoints folder {taehv_checkpoint_path}. Downloading...")
            os.makedirs("checkpoints", exist_ok=True)
            download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
            try:
                urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
                print(f"Successfully downloaded taew2_1.pth to {taehv_checkpoint_path}")
            except Exception as e:
                print(f"Failed to download taew2_1.pth: {e}")
                raise

        class DotDict(dict):
            __getattr__ = dict.__getitem__
            __setattr__ = dict.__setitem__

        class TAEHVDiffusersWrapper(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.dtype = torch.float16
                self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
                self.config = DotDict(scaling_factor=1.0)

            def decode(self, latents, return_dict=None):
                # n, c, t, h, w = latents.shape
                # low-memory, set parallel=True for faster + higher memory
                return self.taehv.decode_video(latents, parallel=False).mul_(2).sub_(1)

        current_vae_decoder = TAEHVDiffusersWrapper()
    else:
        current_vae_decoder = VAEDecoderWrapper()
        vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu")
        decoder_state_dict = {}
        for key, value in vae_state_dict.items():
            if 'decoder.' in key or 'conv2' in key:
                decoder_state_dict[key] = value
        current_vae_decoder.load_state_dict(decoder_state_dict)

    current_vae_decoder.eval()
    current_vae_decoder.to(dtype=torch.float16)
    current_vae_decoder.requires_grad_(False)
    current_vae_decoder.to(gpu)
    current_use_taehv = use_taehv

    print(f"βœ… VAE decoder initialized with {'TAEHV' if use_taehv else 'default VAE'}")
    return current_vae_decoder


# Initialize with default VAE
vae_decoder = initialize_vae_decoder(use_taehv=False, use_trt=args.trt)

transformer = WanDiffusionWrapper(is_causal=True)
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
transformer.load_state_dict(state_dict['generator_ema'])

text_encoder.eval()
transformer.eval()

transformer.to(dtype=torch.float16)
text_encoder.to(dtype=torch.bfloat16)

text_encoder.requires_grad_(False)
transformer.requires_grad_(False)

pipeline = CausalInferencePipeline(
    config,
    device=gpu,
    generator=transformer,
    text_encoder=text_encoder,
    vae=vae_decoder
)

if low_memory:
    DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
    text_encoder.to(gpu)
transformer.to(gpu)

# Flask and SocketIO setup
app = Flask(__name__)
app.config['SECRET_KEY'] = 'frontend_buffered_demo'
socketio = SocketIO(app, cors_allowed_origins="*")

generation_active = False
stop_event = Event()
frame_send_queue = queue.Queue()
sender_thread = None
models_compiled = False


def tensor_to_base64_frame(frame_tensor):
    """Convert a single frame tensor to base64 image string."""
    global frame_number, anim_name
    # Clamp and normalize to 0-255
    frame = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
    frame = frame.to(torch.uint8).cpu().numpy()

    # CHW -> HWC
    if len(frame.shape) == 3:
        frame = np.transpose(frame, (1, 2, 0))

    # Convert to PIL Image
    if frame.shape[2] == 3:  # RGB
        image = Image.fromarray(frame, 'RGB')
    else:  # Handle other formats
        image = Image.fromarray(frame)

    # Convert to base64
    buffer = BytesIO()
    image.save(buffer, format='JPEG', quality=100)
    if not os.path.exists("./images/%s" % anim_name):
        os.makedirs("./images/%s" % anim_name)
    frame_number += 1
    image.save("./images/%s/%s_%03d.jpg" % (anim_name, anim_name, frame_number))
    img_str = base64.b64encode(buffer.getvalue()).decode()
    return f"data:image/jpeg;base64,{img_str}"


def frame_sender_worker():
    """Background thread that processes frame send queue non-blocking."""
    global frame_send_queue, generation_active, stop_event

    print("πŸ“‘ Frame sender thread started")

    while True:
        frame_data = None
        try:
            # Get frame data from queue
            frame_data = frame_send_queue.get(timeout=1.0)

            if frame_data is None:  # Shutdown signal
                frame_send_queue.task_done()  # Mark shutdown signal as done
                break

            frame_tensor, frame_index, block_index, job_id = frame_data

            # Convert tensor to base64
            base64_frame = tensor_to_base64_frame(frame_tensor)

            # Send via SocketIO
            try:
                socketio.emit('frame_ready', {
                    'data': base64_frame,
                    'frame_index': frame_index,
                    'block_index': block_index,
                    'job_id': job_id
                })
            except Exception as e:
                print(f"⚠️ Failed to send frame {frame_index}: {e}")

            frame_send_queue.task_done()

        except queue.Empty:
            # Check if we should continue running
            if not generation_active and frame_send_queue.empty():
                break
        except Exception as e:
            print(f"❌ Frame sender error: {e}")
            # Make sure to mark task as done even if there's an error
            if frame_data is not None:
                try:
                    frame_send_queue.task_done()
                except Exception as e:
                    print(f"❌ Failed to mark frame task as done: {e}")
            break

    print("πŸ“‘ Frame sender thread stopped")


@torch.no_grad()
def generate_video_stream(prompt, seed, enable_torch_compile=False, enable_fp8=False, use_taehv=False):
    """Generate video and push frames immediately to frontend."""
    global generation_active, stop_event, frame_send_queue, sender_thread, models_compiled, torch_compile_applied, fp8_applied, current_vae_decoder, current_use_taehv, frame_rate, anim_name

    try:
        generation_active = True
        stop_event.clear()
        job_id = generate_timestamp()

        # Start frame sender thread if not already running
        if sender_thread is None or not sender_thread.is_alive():
            sender_thread = Thread(target=frame_sender_worker, daemon=True)
            sender_thread.start()

        # Emit progress updates
        def emit_progress(message, progress):
            try:
                socketio.emit('progress', {
                    'message': message,
                    'progress': progress,
                    'job_id': job_id
                })
            except Exception as e:
                print(f"❌ Failed to emit progress: {e}")

        emit_progress('Starting generation...', 0)

        # Handle VAE decoder switching
        if use_taehv != current_use_taehv:
            emit_progress('Switching VAE decoder...', 2)
            print(f"πŸ”„ Switching VAE decoder to {'TAEHV' if use_taehv else 'default VAE'}")
            current_vae_decoder = initialize_vae_decoder(use_taehv=use_taehv)
            # Update pipeline with new VAE decoder
            pipeline.vae = current_vae_decoder

        # Handle FP8 quantization
        if enable_fp8 and not fp8_applied:
            emit_progress('Applying FP8 quantization...', 3)
            print("πŸ”§ Applying FP8 quantization to transformer")
            from torchao.quantization.quant_api import quantize_, Float8DynamicActivationFloat8WeightConfig, PerTensor
            quantize_(transformer, Float8DynamicActivationFloat8WeightConfig(granularity=PerTensor()))
            fp8_applied = True

        # Text encoding
        emit_progress('Encoding text prompt...', 8)
        conditional_dict = text_encoder(text_prompts=[prompt])
        for key, value in conditional_dict.items():
            conditional_dict[key] = value.to(dtype=torch.float16)
        if low_memory:
            gpu_memory_preservation = get_cuda_free_memory_gb(gpu) + 5
            move_model_to_device_with_memory_preservation(
                text_encoder,target_device=gpu, preserved_memory_gb=gpu_memory_preservation)

        # Handle torch.compile if enabled
        torch_compile_applied = enable_torch_compile
        if enable_torch_compile and not models_compiled:
            # Compile transformer and decoder
            transformer.compile(mode="max-autotune-no-cudagraphs")
            if not current_use_taehv and not low_memory and not args.trt:
                current_vae_decoder.compile(mode="max-autotune-no-cudagraphs")

        # Initialize generation
        emit_progress('Initializing generation...', 12)

        rnd = torch.Generator(gpu).manual_seed(seed)
        # all_latents = torch.zeros([1, 21, 16, 60, 104], device=gpu, dtype=torch.bfloat16)

        pipeline._initialize_kv_cache(batch_size=1, dtype=torch.float16, device=gpu)
        pipeline._initialize_crossattn_cache(batch_size=1, dtype=torch.float16, device=gpu)

        noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)

        # Generation parameters
        num_blocks = 7
        current_start_frame = 0
        num_input_frames = 0
        all_num_frames = [pipeline.num_frame_per_block] * num_blocks
        if current_use_taehv:
            vae_cache = None
        else:
            vae_cache = ZERO_VAE_CACHE
            for i in range(len(vae_cache)):
                vae_cache[i] = vae_cache[i].to(device=gpu, dtype=torch.float16)

        total_frames_sent = 0
        generation_start_time = time.time()

        emit_progress('Generating frames... (frontend handles timing)', 15)

        for idx, current_num_frames in enumerate(all_num_frames):
            if not generation_active or stop_event.is_set():
                break

            progress = int(((idx + 1) / len(all_num_frames)) * 80) + 15

            # Special message for first block with torch.compile
            if idx == 0 and torch_compile_applied and not models_compiled:
                emit_progress(
                    f'Processing block 1/{len(all_num_frames)} - Compiling models (may take 5-10 minutes)...', progress)
                print(f"πŸ”₯ Processing block {idx+1}/{len(all_num_frames)}")
                models_compiled = True
            else:
                emit_progress(f'Processing block {idx+1}/{len(all_num_frames)}...', progress)
                print(f"πŸ”„ Processing block {idx+1}/{len(all_num_frames)}")

            block_start_time = time.time()

            noisy_input = noise[:, current_start_frame -
                                num_input_frames:current_start_frame + current_num_frames - num_input_frames]

            # Denoising loop
            denoising_start = time.time()
            for index, current_timestep in enumerate(pipeline.denoising_step_list):
                if not generation_active or stop_event.is_set():
                    break

                timestep = torch.ones([1, current_num_frames], device=noise.device,
                                      dtype=torch.int64) * current_timestep

                if index < len(pipeline.denoising_step_list) - 1:
                    _, denoised_pred = transformer(
                        noisy_image_or_video=noisy_input,
                        conditional_dict=conditional_dict,
                        timestep=timestep,
                        kv_cache=pipeline.kv_cache1,
                        crossattn_cache=pipeline.crossattn_cache,
                        current_start=current_start_frame * pipeline.frame_seq_length
                    )
                    next_timestep = pipeline.denoising_step_list[index + 1]
                    noisy_input = pipeline.scheduler.add_noise(
                        denoised_pred.flatten(0, 1),
                        torch.randn_like(denoised_pred.flatten(0, 1)),
                        next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
                    ).unflatten(0, denoised_pred.shape[:2])
                else:
                    _, denoised_pred = transformer(
                        noisy_image_or_video=noisy_input,
                        conditional_dict=conditional_dict,
                        timestep=timestep,
                        kv_cache=pipeline.kv_cache1,
                        crossattn_cache=pipeline.crossattn_cache,
                        current_start=current_start_frame * pipeline.frame_seq_length
                    )

            if not generation_active or stop_event.is_set():
                break

            denoising_time = time.time() - denoising_start
            print(f"⚑ Block {idx+1} denoising completed in {denoising_time:.2f}s")

            # Record output
            # all_latents[:, current_start_frame:current_start_frame + current_num_frames] = denoised_pred

            # Update KV cache for next block
            if idx != len(all_num_frames) - 1:
                transformer(
                    noisy_image_or_video=denoised_pred,
                    conditional_dict=conditional_dict,
                    timestep=torch.zeros_like(timestep),
                    kv_cache=pipeline.kv_cache1,
                    crossattn_cache=pipeline.crossattn_cache,
                    current_start=current_start_frame * pipeline.frame_seq_length,
                )

            # Decode to pixels and send frames immediately
            print(f"🎨 Decoding block {idx+1} to pixels...")
            decode_start = time.time()
            if args.trt:
                all_current_pixels = []
                for i in range(denoised_pred.shape[1]):
                    is_first_frame = torch.tensor(1.0).cuda().half() if idx == 0 and i == 0 else \
                        torch.tensor(0.0).cuda().half()
                    outputs = vae_decoder.forward(denoised_pred[:, i:i + 1, :, :, :].half(), is_first_frame, *vae_cache)
                    # outputs = vae_decoder.forward(denoised_pred.float(), *vae_cache)
                    current_pixels, vae_cache = outputs[0], outputs[1:]
                    print(current_pixels.max(), current_pixels.min())
                    all_current_pixels.append(current_pixels.clone())
                pixels = torch.cat(all_current_pixels, dim=1)
                if idx == 0:
                    pixels = pixels[:, 3:, :, :, :]  # Skip first 3 frames of first block
            else:
                if current_use_taehv:
                    if vae_cache is None:
                        vae_cache = denoised_pred
                    else:
                        denoised_pred = torch.cat([vae_cache, denoised_pred], dim=1)
                        vae_cache = denoised_pred[:, -3:, :, :, :]
                    pixels = current_vae_decoder.decode(denoised_pred)
                    print(f"denoised_pred shape: {denoised_pred.shape}")
                    print(f"pixels shape: {pixels.shape}")
                    if idx == 0:
                        pixels = pixels[:, 3:, :, :, :]  # Skip first 3 frames of first block
                    else:
                        pixels = pixels[:, 12:, :, :, :]

                else:
                    pixels, vae_cache = current_vae_decoder(denoised_pred.half(), *vae_cache)
                    if idx == 0:
                        pixels = pixels[:, 3:, :, :, :]  # Skip first 3 frames of first block

            decode_time = time.time() - decode_start
            print(f"🎨 Block {idx+1} VAE decoding completed in {decode_time:.2f}s")

            # Queue frames for non-blocking sending
            block_frames = pixels.shape[1]
            print(f"πŸ“‘ Queueing {block_frames} frames from block {idx+1} for sending...")
            queue_start = time.time()

            for frame_idx in range(block_frames):
                if not generation_active or stop_event.is_set():
                    break

                frame_tensor = pixels[0, frame_idx].cpu()

                # Queue frame data in non-blocking way
                frame_send_queue.put((frame_tensor, total_frames_sent, idx, job_id))
                total_frames_sent += 1

            queue_time = time.time() - queue_start
            block_time = time.time() - block_start_time
            print(f"βœ… Block {idx+1} completed in {block_time:.2f}s ({block_frames} frames queued in {queue_time:.3f}s)")

            current_start_frame += current_num_frames

        generation_time = time.time() - generation_start_time
        print(f"πŸŽ‰ Generation completed in {generation_time:.2f}s! {total_frames_sent} frames queued for sending")

        # Wait for all frames to be sent before completing
        emit_progress('Waiting for all frames to be sent...', 97)
        print("⏳ Waiting for all frames to be sent...")
        frame_send_queue.join()  # Wait for all queued frames to be processed
        print("βœ… All frames sent successfully!")

        generate_mp4_from_images("./images","./videos/"+anim_name+".mp4", frame_rate )
        # Final progress update
        emit_progress('Generation complete!', 100)

        try:
            socketio.emit('generation_complete', {
                'message': 'Video generation completed!',
                'total_frames': total_frames_sent,
                'generation_time': f"{generation_time:.2f}s",
                'job_id': job_id
            })
        except Exception as e:
            print(f"❌ Failed to emit generation complete: {e}")

    except Exception as e:
        print(f"❌ Generation failed: {e}")
        try:
            socketio.emit('error', {
                'message': f'Generation failed: {str(e)}',
                'job_id': job_id
            })
        except Exception as e:
            print(f"❌ Failed to emit error: {e}")
    finally:
        generation_active = False
        stop_event.set()

        # Clean up sender thread
        try:
            frame_send_queue.put(None)
        except Exception as e:
            print(f"❌ Failed to put None in frame_send_queue: {e}")


def generate_mp4_from_images(image_directory, output_video_path, fps=24):
    """
    Generate an MP4 video from a directory of images ordered alphabetically.

    :param image_directory: Path to the directory containing images.
    :param output_video_path: Path where the output MP4 will be saved.
    :param fps: Frames per second for the output video.
    """
    global anim_name
    # Construct the ffmpeg command
    cmd = [
        'ffmpeg',
        '-framerate', str(fps),
        '-i', os.path.join(image_directory, anim_name+'/'+anim_name+'_%03d.jpg'),  # Adjust the pattern if necessary
        '-c:v', 'libx264',
        '-pix_fmt', 'yuv420p',
        output_video_path
    ]
    try:
        subprocess.run(cmd, check=True)
        print(f"Video saved to {output_video_path}")
    except subprocess.CalledProcessError as e:
        print(f"An error occurred: {e}")

def calculate_sha256(data):
    # Convert data to bytes if it's not already
    if isinstance(data, str):
        data = data.encode()
    # Calculate SHA-256 hash
    sha256_hash = hashlib.sha256(data).hexdigest()
    return sha256_hash

# Socket.IO event handlers
@socketio.on('connect')
def handle_connect():
    print('Client connected')
    emit('status', {'message': 'Connected to frontend-buffered demo server'})


@socketio.on('disconnect')
def handle_disconnect():
    print('Client disconnected')


@socketio.on('start_generation')
def handle_start_generation(data):
    global generation_active, frame_number, anim_name, frame_rate

    frame_number = 0
    if generation_active:
        emit('error', {'message': 'Generation already in progress'})
        return

    prompt = data.get('prompt', '')

    seed = data.get('seed', -1)
    if seed==-1:
        seed = random.randint(0, 2**32)

    # Extract words up to the first punctuation or newline
    words_up_to_punctuation = re.split(r'[^\w\s]', prompt)[0].strip() if prompt else ''
    if not words_up_to_punctuation:
        words_up_to_punctuation = re.split(r'[\n\r]', prompt)[0].strip()

    # Calculate SHA-256 hash of the entire prompt
    sha256_hash = calculate_sha256(prompt)

    # Create anim_name with the extracted words and first 10 characters of the hash
    anim_name = f"{words_up_to_punctuation[:20]}_{str(seed)}_{sha256_hash[:10]}"

    generation_active = True
    generation_start_time = time.time()
    enable_torch_compile = data.get('enable_torch_compile', False)
    enable_fp8 = data.get('enable_fp8', False)
    use_taehv = data.get('use_taehv', False)
    frame_rate = data.get('fps', 6)

    if not prompt:
        emit('error', {'message': 'Prompt is required'})
        return

    # Start generation in background thread
    socketio.start_background_task(generate_video_stream, prompt, seed,
                                   enable_torch_compile, enable_fp8, use_taehv)
    emit('status', {'message': 'Generation started - frames will be sent immediately'})


@socketio.on('stop_generation')
def handle_stop_generation():
    global generation_active, stop_event, frame_send_queue
    generation_active = False
    stop_event.set()

    # Signal sender thread to stop (will be processed after current frames)
    try:
        frame_send_queue.put(None)
    except Exception as e:
        print(f"❌ Failed to put None in frame_send_queue: {e}")

    emit('status', {'message': 'Generation stopped'})

# Web routes


@app.route('/')
def index():
    return render_template('demo.html')


@app.route('/api/status')
def api_status():
    return jsonify({
        'generation_active': generation_active,
        'free_vram_gb': get_cuda_free_memory_gb(gpu),
        'fp8_applied': fp8_applied,
        'torch_compile_applied': torch_compile_applied,
        'current_use_taehv': current_use_taehv
    })


if __name__ == '__main__':
    print(f"πŸš€ Starting demo on http://{args.host}:{args.port}")
    socketio.run(app, host=args.host, port=args.port, debug=False)