Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,785 Bytes
0fd2f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# ---- INT8 (optional) ----
from demo_utils.vae import (
VAEDecoderWrapperSingle, # main nn.Module
ZERO_VAE_CACHE # helper constants shipped with your code base
)
import pycuda.driver as cuda # β add
import pycuda.autoinit # noqa
import sys
from pathlib import Path
import torch
import tensorrt as trt
from utils.dataset import ShardingLMDBDataset
data_path = "/mnt/localssd/wanx_14B_shift-3.0_cfg-5.0_lmdb_oneshard"
dataset = ShardingLMDBDataset(data_path, max_pair=int(1e8))
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=1,
num_workers=0
)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1οΈβ£ Bring the PyTorch model into scope
# (all code you pasted lives in `vae_decoder.py`)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# --- dummy tensors (exact shapes you posted) ---
dummy_input = torch.randn(1, 1, 16, 60, 104).half().cuda()
is_first_frame = torch.tensor([1.0], device="cuda", dtype=torch.float16)
dummy_cache_input = [
torch.randn(*s.shape).half().cuda() if isinstance(s, torch.Tensor) else s
for s in ZERO_VAE_CACHE # keep exactly the same ordering
]
inputs = [dummy_input, is_first_frame, *dummy_cache_input]
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2οΈβ£ Export β ONNX
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
model = VAEDecoderWrapperSingle().half().cuda().eval()
vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu")
decoder_state_dict = {}
for key, value in vae_state_dict.items():
if 'decoder.' in key or 'conv2' in key:
decoder_state_dict[key] = value
model.load_state_dict(decoder_state_dict)
model = model.half().cuda().eval() # only batch dim dynamic
onnx_path = Path("vae_decoder.onnx")
feat_names = [f"vae_cache_{i}" for i in range(len(dummy_cache_input))]
all_inputs_names = ["z", "use_cache"] + feat_names
with torch.inference_mode():
torch.onnx.export(
model,
tuple(inputs), # must be a tuple
onnx_path.as_posix(),
input_names=all_inputs_names,
output_names=["rgb_out", "cache_out"],
opset_version=17,
do_constant_folding=True,
dynamo=True
)
print(f"β
ONNX graph saved to {onnx_path.resolve()}")
# (Optional) quick sanity-check with ONNX-Runtime
try:
import onnxruntime as ort
sess = ort.InferenceSession(onnx_path.as_posix(),
providers=["CUDAExecutionProvider"])
ort_inputs = {n: t.cpu().numpy() for n, t in zip(all_inputs_names, inputs)}
_ = sess.run(None, ort_inputs)
print("β
ONNX graph is executable")
except Exception as e:
print("β οΈ ONNX check failed:", e)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3οΈβ£ Build the TensorRT engine
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(
1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, TRT_LOGGER)
with open(onnx_path, "rb") as f:
if not parser.parse(f.read()):
for i in range(parser.num_errors):
print(parser.get_error(i))
sys.exit("β ONNX β TRT parsing failed")
config = builder.create_builder_config()
def set_workspace(config, bytes_):
"""Version-agnostic workspace limit."""
if hasattr(config, "max_workspace_size"): # TRT 8 / 9
config.max_workspace_size = bytes_
else: # TRT 10+
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, bytes_)
# β¦
config = builder.create_builder_config()
set_workspace(config, 4 << 30) # 4 GB
# 4 GB
if builder.platform_has_fast_fp16:
config.set_flag(trt.BuilderFlag.FP16)
# ---- INT8 (optional) ----
# provide a calibrator if you need an INT8 engine; comment this
# block if you only care about FP16.
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# helper: version-agnostic workspace limit
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def set_workspace(config: trt.IBuilderConfig, bytes_: int = 4 << 30):
"""
TRT < 10.x β config.max_workspace_size
TRT β₯ 10.x β config.set_memory_pool_limit(...)
"""
if hasattr(config, "max_workspace_size"): # TRT 8 / 9
config.max_workspace_size = bytes_
else: # TRT 10+
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE,
bytes_)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# (optional) INT-8 calibrator
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# βΌ Only keep this block if you really need INT-8 βΌ # gracefully skip if PyCUDA not present
class VAECalibrator(trt.IInt8EntropyCalibrator2):
def __init__(self, loader, cache="calibration.cache", max_batches=10):
super().__init__()
self.loader = iter(loader)
self.batch_size = loader.batch_size or 1
self.max_batches = max_batches
self.count = 0
self.cache_file = cache
self.stream = cuda.Stream()
self.dev_ptrs = {}
# --- TRT 10 needs BOTH spellings ---
def get_batch_size(self):
return self.batch_size
def getBatchSize(self):
return self.batch_size
def get_batch(self, names):
if self.count >= self.max_batches:
return None
# Randomly sample a number from 1 to 10
import random
vae_idx = random.randint(0, 10)
data = next(self.loader)
latent = data['ode_latent'][0][:, :1]
is_first_frame = torch.tensor([1.0], device="cuda", dtype=torch.float16)
feat_cache = ZERO_VAE_CACHE
for i in range(vae_idx):
inputs = [latent, is_first_frame, *feat_cache]
with torch.inference_mode():
outputs = model(*inputs)
latent = data['ode_latent'][0][:, i + 1:i + 2]
is_first_frame = torch.tensor([0.0], device="cuda", dtype=torch.float16)
feat_cache = outputs[1:]
# -------- ensure context is current --------
z_np = latent.cpu().numpy().astype('float32')
ptrs = [] # list[int] β one entry per name
for name in names: # <-- match TRT's binding order
if name == "z":
arr = z_np
elif name == "use_cache":
arr = is_first_frame.cpu().numpy().astype('float32')
else:
idx = int(name.split('_')[-1]) # "vae_cache_17" -> 17
arr = feat_cache[idx].cpu().numpy().astype('float32')
if name not in self.dev_ptrs:
self.dev_ptrs[name] = cuda.mem_alloc(arr.nbytes)
cuda.memcpy_htod_async(self.dev_ptrs[name], arr, self.stream)
ptrs.append(int(self.dev_ptrs[name])) # ***int() is required***
self.stream.synchronize()
self.count += 1
print(f"Calibration batch {self.count}/{self.max_batches}")
return ptrs
# --- calibration-cache helpers (both spellings) ---
def read_calibration_cache(self):
try:
with open(self.cache_file, "rb") as f:
return f.read()
except FileNotFoundError:
return None
def readCalibrationCache(self):
return self.read_calibration_cache()
def write_calibration_cache(self, cache):
with open(self.cache_file, "wb") as f:
f.write(cache)
def writeCalibrationCache(self, cache):
self.write_calibration_cache(cache)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Builder-config + optimisation profile
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
config = builder.create_builder_config()
set_workspace(config, 4 << 30) # 4 GB
# βΊ enable FP16 if possible
if builder.platform_has_fast_fp16:
config.set_flag(trt.BuilderFlag.FP16)
# βΊ enable INT-8 (delete this block if you donβt need it)
if cuda is not None:
config.set_flag(trt.BuilderFlag.INT8)
# supply any representative batch you like β here we reuse the latent z
calib = VAECalibrator(dataloader)
# TRT-10 renamed the setter:
if hasattr(config, "set_int8_calibrator"): # TRT 10+
config.set_int8_calibrator(calib)
else: # TRT β€ 9
config.int8_calibrator = calib
# ---- optimisation profile ----
profile = builder.create_optimization_profile()
profile.set_shape(all_inputs_names[0], # latent z
min=(1, 1, 16, 60, 104),
opt=(1, 1, 16, 60, 104),
max=(1, 1, 16, 60, 104))
profile.set_shape("use_cache", # scalar flag
min=(1,), opt=(1,), max=(1,))
for name, tensor in zip(all_inputs_names[2:], dummy_cache_input):
profile.set_shape(name, tensor.shape, tensor.shape, tensor.shape)
config.add_optimization_profile(profile)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Build the engine (API changed in TRT-10)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
print("βοΈ Building engine β¦ (can take a minute)")
if hasattr(builder, "build_serialized_network"): # TRT 10+
serialized_engine = builder.build_serialized_network(network, config)
assert serialized_engine is not None, "build_serialized_network() failed"
plan_path = Path("checkpoints/vae_decoder_int8.trt")
plan_path.write_bytes(serialized_engine)
engine_bytes = serialized_engine # keep for smoke-test
else: # TRT β€ 9
engine = builder.build_engine(network, config)
assert engine is not None, "build_engine() returned None"
plan_path = Path("checkpoints/vae_decoder_int8.trt")
plan_path.write_bytes(engine.serialize())
engine_bytes = engine.serialize()
print(f"β
TensorRT engine written to {plan_path.resolve()}")
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4οΈβ£ Quick smoke-test with the brand-new engine
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with trt.Runtime(TRT_LOGGER) as rt:
engine = rt.deserialize_cuda_engine(engine_bytes)
context = engine.create_execution_context()
stream = torch.cuda.current_stream().cuda_stream
# pre-allocate device buffers once
device_buffers, outputs = {}, []
dtype_map = {trt.float32: torch.float32,
trt.float16: torch.float16,
trt.int8: torch.int8,
trt.int32: torch.int32}
for name, tensor in zip(all_inputs_names, inputs):
if -1 in engine.get_tensor_shape(name): # dynamic input
context.set_input_shape(name, tensor.shape)
context.set_tensor_address(name, int(tensor.data_ptr()))
device_buffers[name] = tensor
context.infer_shapes() # propagate β’ outputs
for i in range(engine.num_io_tensors):
name = engine.get_tensor_name(i)
if engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT:
shape = tuple(context.get_tensor_shape(name))
dtype = dtype_map[engine.get_tensor_dtype(name)]
out = torch.empty(shape, dtype=dtype, device="cuda")
context.set_tensor_address(name, int(out.data_ptr()))
outputs.append(out)
print(f"output {name} shape: {shape}")
context.execute_async_v3(stream_handle=stream)
torch.cuda.current_stream().synchronize()
print("β
TRT execution OK β first output shape:", outputs[0].shape)
|