File size: 10,715 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from typing import Tuple
from einops import rearrange
from torch import nn
import torch.distributed as dist
import torch

from pipeline import SelfForcingTrainingPipeline
from utils.loss import get_denoising_loss
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper


class BaseModel(nn.Module):
    def __init__(self, args, device):
        super().__init__()
        self._initialize_models(args, device)

        self.device = device
        self.args = args
        self.dtype = torch.bfloat16 if args.mixed_precision else torch.float32
        if hasattr(args, "denoising_step_list"):
            self.denoising_step_list = torch.tensor(args.denoising_step_list, dtype=torch.long)
            if args.warp_denoising_step:
                timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32)))
                self.denoising_step_list = timesteps[1000 - self.denoising_step_list]

    def _initialize_models(self, args, device):
        self.real_model_name = getattr(args, "real_name", "Wan2.1-T2V-1.3B")
        self.fake_model_name = getattr(args, "fake_name", "Wan2.1-T2V-1.3B")

        self.generator = WanDiffusionWrapper(**getattr(args, "model_kwargs", {}), is_causal=True)
        self.generator.model.requires_grad_(True)

        self.real_score = WanDiffusionWrapper(model_name=self.real_model_name, is_causal=False)
        self.real_score.model.requires_grad_(False)

        self.fake_score = WanDiffusionWrapper(model_name=self.fake_model_name, is_causal=False)
        self.fake_score.model.requires_grad_(True)

        self.text_encoder = WanTextEncoder()
        self.text_encoder.requires_grad_(False)

        self.vae = WanVAEWrapper()
        self.vae.requires_grad_(False)

        self.scheduler = self.generator.get_scheduler()
        self.scheduler.timesteps = self.scheduler.timesteps.to(device)

    def _get_timestep(
            self,
            min_timestep: int,
            max_timestep: int,
            batch_size: int,
            num_frame: int,
            num_frame_per_block: int,
            uniform_timestep: bool = False
    ) -> torch.Tensor:
        """
        Randomly generate a timestep tensor based on the generator's task type. It uniformly samples a timestep
        from the range [min_timestep, max_timestep], and returns a tensor of shape [batch_size, num_frame].
        - If uniform_timestep, it will use the same timestep for all frames.
        - If not uniform_timestep, it will use a different timestep for each block.
        """
        if uniform_timestep:
            timestep = torch.randint(
                min_timestep,
                max_timestep,
                [batch_size, 1],
                device=self.device,
                dtype=torch.long
            ).repeat(1, num_frame)
            return timestep
        else:
            timestep = torch.randint(
                min_timestep,
                max_timestep,
                [batch_size, num_frame],
                device=self.device,
                dtype=torch.long
            )
            # make the noise level the same within every block
            if self.independent_first_frame:
                # the first frame is always kept the same
                timestep_from_second = timestep[:, 1:]
                timestep_from_second = timestep_from_second.reshape(
                    timestep_from_second.shape[0], -1, num_frame_per_block)
                timestep_from_second[:, :, 1:] = timestep_from_second[:, :, 0:1]
                timestep_from_second = timestep_from_second.reshape(
                    timestep_from_second.shape[0], -1)
                timestep = torch.cat([timestep[:, 0:1], timestep_from_second], dim=1)
            else:
                timestep = timestep.reshape(
                    timestep.shape[0], -1, num_frame_per_block)
                timestep[:, :, 1:] = timestep[:, :, 0:1]
                timestep = timestep.reshape(timestep.shape[0], -1)
            return timestep


class SelfForcingModel(BaseModel):
    def __init__(self, args, device):
        super().__init__(args, device)
        self.denoising_loss_func = get_denoising_loss(args.denoising_loss_type)()

    def _run_generator(
        self,
        image_or_video_shape,
        conditional_dict: dict,
        initial_latent: torch.tensor = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Optionally simulate the generator's input from noise using backward simulation
        and then run the generator for one-step.
        Input:
            - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
            - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
            - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
            - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
            - initial_latent: a tensor containing the initial latents [B, F, C, H, W].
        Output:
            - pred_image: a tensor with shape [B, F, C, H, W].
            - denoised_timestep: an integer
        """
        # Step 1: Sample noise and backward simulate the generator's input
        assert getattr(self.args, "backward_simulation", True), "Backward simulation needs to be enabled"
        if initial_latent is not None:
            conditional_dict["initial_latent"] = initial_latent
        if self.args.i2v:
            noise_shape = [image_or_video_shape[0], image_or_video_shape[1] - 1, *image_or_video_shape[2:]]
        else:
            noise_shape = image_or_video_shape.copy()

        # During training, the number of generated frames should be uniformly sampled from
        # [21, self.num_training_frames], but still being a multiple of self.num_frame_per_block
        min_num_frames = 20 if self.args.independent_first_frame else 21
        max_num_frames = self.num_training_frames - 1 if self.args.independent_first_frame else self.num_training_frames
        assert max_num_frames % self.num_frame_per_block == 0
        assert min_num_frames % self.num_frame_per_block == 0
        max_num_blocks = max_num_frames // self.num_frame_per_block
        min_num_blocks = min_num_frames // self.num_frame_per_block
        num_generated_blocks = torch.randint(min_num_blocks, max_num_blocks + 1, (1,), device=self.device)
        dist.broadcast(num_generated_blocks, src=0)
        num_generated_blocks = num_generated_blocks.item()
        num_generated_frames = num_generated_blocks * self.num_frame_per_block
        if self.args.independent_first_frame and initial_latent is None:
            num_generated_frames += 1
            min_num_frames += 1
        # Sync num_generated_frames across all processes
        noise_shape[1] = num_generated_frames

        pred_image_or_video, denoised_timestep_from, denoised_timestep_to = self._consistency_backward_simulation(
            noise=torch.randn(noise_shape,
                              device=self.device, dtype=self.dtype),
            **conditional_dict,
        )
        # Slice last 21 frames
        if pred_image_or_video.shape[1] > 21:
            with torch.no_grad():
                # Reencode to get image latent
                latent_to_decode = pred_image_or_video[:, :-20, ...]
                # Deccode to video
                pixels = self.vae.decode_to_pixel(latent_to_decode)
                frame = pixels[:, -1:, ...].to(self.dtype)
                frame = rearrange(frame, "b t c h w -> b c t h w")
                # Encode frame to get image latent
                image_latent = self.vae.encode_to_latent(frame).to(self.dtype)
            pred_image_or_video_last_21 = torch.cat([image_latent, pred_image_or_video[:, -20:, ...]], dim=1)
        else:
            pred_image_or_video_last_21 = pred_image_or_video

        if num_generated_frames != min_num_frames:
            # Currently, we do not use gradient for the first chunk, since it contains image latents
            gradient_mask = torch.ones_like(pred_image_or_video_last_21, dtype=torch.bool)
            if self.args.independent_first_frame:
                gradient_mask[:, :1] = False
            else:
                gradient_mask[:, :self.num_frame_per_block] = False
        else:
            gradient_mask = None

        pred_image_or_video_last_21 = pred_image_or_video_last_21.to(self.dtype)
        return pred_image_or_video_last_21, gradient_mask, denoised_timestep_from, denoised_timestep_to

    def _consistency_backward_simulation(
        self,
        noise: torch.Tensor,
        **conditional_dict: dict
    ) -> torch.Tensor:
        """
        Simulate the generator's input from noise to avoid training/inference mismatch.
        See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
        Here we use the consistency sampler (https://arxiv.org/abs/2303.01469)
        Input:
            - noise: a tensor sampled from N(0, 1) with shape [B, F, C, H, W] where the number of frame is 1 for images.
            - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
        Output:
            - output: a tensor with shape [B, T, F, C, H, W].
            T is the total number of timesteps. output[0] is a pure noise and output[i] and i>0
            represents the x0 prediction at each timestep.
        """
        if self.inference_pipeline is None:
            self._initialize_inference_pipeline()

        return self.inference_pipeline.inference_with_trajectory(
            noise=noise, **conditional_dict
        )

    def _initialize_inference_pipeline(self):
        """
        Lazy initialize the inference pipeline during the first backward simulation run.
        Here we encapsulate the inference code with a model-dependent outside function.
        We pass our FSDP-wrapped modules into the pipeline to save memory.
        """
        self.inference_pipeline = SelfForcingTrainingPipeline(
            denoising_step_list=self.denoising_step_list,
            scheduler=self.scheduler,
            generator=self.generator,
            num_frame_per_block=self.num_frame_per_block,
            independent_first_frame=self.args.independent_first_frame,
            same_step_across_blocks=self.args.same_step_across_blocks,
            last_step_only=self.args.last_step_only,
            num_max_frames=self.num_training_frames,
            context_noise=self.args.context_noise
        )