File size: 15,484 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from pipeline import SelfForcingTrainingPipeline
import torch.nn.functional as F
from typing import Optional, Tuple
import torch

from model.base import SelfForcingModel


class DMD(SelfForcingModel):
    def __init__(self, args, device):
        """
        Initialize the DMD (Distribution Matching Distillation) module.
        This class is self-contained and compute generator and fake score losses
        in the forward pass.
        """
        super().__init__(args, device)
        self.num_frame_per_block = getattr(args, "num_frame_per_block", 1)
        self.same_step_across_blocks = getattr(args, "same_step_across_blocks", True)
        self.num_training_frames = getattr(args, "num_training_frames", 21)

        if self.num_frame_per_block > 1:
            self.generator.model.num_frame_per_block = self.num_frame_per_block

        self.independent_first_frame = getattr(args, "independent_first_frame", False)
        if self.independent_first_frame:
            self.generator.model.independent_first_frame = True
        if args.gradient_checkpointing:
            self.generator.enable_gradient_checkpointing()
            self.fake_score.enable_gradient_checkpointing()

        # this will be init later with fsdp-wrapped modules
        self.inference_pipeline: SelfForcingTrainingPipeline = None

        # Step 2: Initialize all dmd hyperparameters
        self.num_train_timestep = args.num_train_timestep
        self.min_step = int(0.02 * self.num_train_timestep)
        self.max_step = int(0.98 * self.num_train_timestep)
        if hasattr(args, "real_guidance_scale"):
            self.real_guidance_scale = args.real_guidance_scale
            self.fake_guidance_scale = args.fake_guidance_scale
        else:
            self.real_guidance_scale = args.guidance_scale
            self.fake_guidance_scale = 0.0
        self.timestep_shift = getattr(args, "timestep_shift", 1.0)
        self.ts_schedule = getattr(args, "ts_schedule", True)
        self.ts_schedule_max = getattr(args, "ts_schedule_max", False)
        self.min_score_timestep = getattr(args, "min_score_timestep", 0)

        if getattr(self.scheduler, "alphas_cumprod", None) is not None:
            self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device)
        else:
            self.scheduler.alphas_cumprod = None

    def _compute_kl_grad(
        self, noisy_image_or_video: torch.Tensor,
        estimated_clean_image_or_video: torch.Tensor,
        timestep: torch.Tensor,
        conditional_dict: dict, unconditional_dict: dict,
        normalization: bool = True
    ) -> Tuple[torch.Tensor, dict]:
        """
        Compute the KL grad (eq 7 in https://arxiv.org/abs/2311.18828).
        Input:
            - noisy_image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
            - estimated_clean_image_or_video: a tensor with shape [B, F, C, H, W] representing the estimated clean image or video.
            - timestep: a tensor with shape [B, F] containing the randomly generated timestep.
            - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
            - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
            - normalization: a boolean indicating whether to normalize the gradient.
        Output:
            - kl_grad: a tensor representing the KL grad.
            - kl_log_dict: a dictionary containing the intermediate tensors for logging.
        """
        # Step 1: Compute the fake score
        _, pred_fake_image_cond = self.fake_score(
            noisy_image_or_video=noisy_image_or_video,
            conditional_dict=conditional_dict,
            timestep=timestep
        )

        if self.fake_guidance_scale != 0.0:
            _, pred_fake_image_uncond = self.fake_score(
                noisy_image_or_video=noisy_image_or_video,
                conditional_dict=unconditional_dict,
                timestep=timestep
            )
            pred_fake_image = pred_fake_image_cond + (
                pred_fake_image_cond - pred_fake_image_uncond
            ) * self.fake_guidance_scale
        else:
            pred_fake_image = pred_fake_image_cond

        # Step 2: Compute the real score
        # We compute the conditional and unconditional prediction
        # and add them together to achieve cfg (https://arxiv.org/abs/2207.12598)
        _, pred_real_image_cond = self.real_score(
            noisy_image_or_video=noisy_image_or_video,
            conditional_dict=conditional_dict,
            timestep=timestep
        )

        _, pred_real_image_uncond = self.real_score(
            noisy_image_or_video=noisy_image_or_video,
            conditional_dict=unconditional_dict,
            timestep=timestep
        )

        pred_real_image = pred_real_image_cond + (
            pred_real_image_cond - pred_real_image_uncond
        ) * self.real_guidance_scale

        # Step 3: Compute the DMD gradient (DMD paper eq. 7).
        grad = (pred_fake_image - pred_real_image)

        # TODO: Change the normalizer for causal teacher
        if normalization:
            # Step 4: Gradient normalization (DMD paper eq. 8).
            p_real = (estimated_clean_image_or_video - pred_real_image)
            normalizer = torch.abs(p_real).mean(dim=[1, 2, 3, 4], keepdim=True)
            grad = grad / normalizer
        grad = torch.nan_to_num(grad)

        return grad, {
            "dmdtrain_gradient_norm": torch.mean(torch.abs(grad)).detach(),
            "timestep": timestep.detach()
        }

    def compute_distribution_matching_loss(
        self,
        image_or_video: torch.Tensor,
        conditional_dict: dict,
        unconditional_dict: dict,
        gradient_mask: Optional[torch.Tensor] = None,
        denoised_timestep_from: int = 0,
        denoised_timestep_to: int = 0
    ) -> Tuple[torch.Tensor, dict]:
        """
        Compute the DMD loss (eq 7 in https://arxiv.org/abs/2311.18828).
        Input:
            - image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
            - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
            - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
            - gradient_mask: a boolean tensor with the same shape as image_or_video indicating which pixels to compute loss .
        Output:
            - dmd_loss: a scalar tensor representing the DMD loss.
            - dmd_log_dict: a dictionary containing the intermediate tensors for logging.
        """
        original_latent = image_or_video

        batch_size, num_frame = image_or_video.shape[:2]

        with torch.no_grad():
            # Step 1: Randomly sample timestep based on the given schedule and corresponding noise
            min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
            max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
            timestep = self._get_timestep(
                min_timestep,
                max_timestep,
                batch_size,
                num_frame,
                self.num_frame_per_block,
                uniform_timestep=True
            )

            # TODO:should we change it to `timestep = self.scheduler.timesteps[timestep]`?
            if self.timestep_shift > 1:
                timestep = self.timestep_shift * \
                    (timestep / 1000) / \
                    (1 + (self.timestep_shift - 1) * (timestep / 1000)) * 1000
            timestep = timestep.clamp(self.min_step, self.max_step)

            noise = torch.randn_like(image_or_video)
            noisy_latent = self.scheduler.add_noise(
                image_or_video.flatten(0, 1),
                noise.flatten(0, 1),
                timestep.flatten(0, 1)
            ).detach().unflatten(0, (batch_size, num_frame))

            # Step 2: Compute the KL grad
            grad, dmd_log_dict = self._compute_kl_grad(
                noisy_image_or_video=noisy_latent,
                estimated_clean_image_or_video=original_latent,
                timestep=timestep,
                conditional_dict=conditional_dict,
                unconditional_dict=unconditional_dict
            )

        if gradient_mask is not None:
            dmd_loss = 0.5 * F.mse_loss(original_latent.double(
            )[gradient_mask], (original_latent.double() - grad.double()).detach()[gradient_mask], reduction="mean")
        else:
            dmd_loss = 0.5 * F.mse_loss(original_latent.double(
            ), (original_latent.double() - grad.double()).detach(), reduction="mean")
        return dmd_loss, dmd_log_dict

    def generator_loss(
        self,
        image_or_video_shape,
        conditional_dict: dict,
        unconditional_dict: dict,
        clean_latent: torch.Tensor,
        initial_latent: torch.Tensor = None
    ) -> Tuple[torch.Tensor, dict]:
        """
        Generate image/videos from noise and compute the DMD loss.
        The noisy input to the generator is backward simulated.
        This removes the need of any datasets during distillation.
        See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
        Input:
            - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
            - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
            - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
            - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
        Output:
            - loss: a scalar tensor representing the generator loss.
            - generator_log_dict: a dictionary containing the intermediate tensors for logging.
        """
        # Step 1: Unroll generator to obtain fake videos
        pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator(
            image_or_video_shape=image_or_video_shape,
            conditional_dict=conditional_dict,
            initial_latent=initial_latent
        )

        # Step 2: Compute the DMD loss
        dmd_loss, dmd_log_dict = self.compute_distribution_matching_loss(
            image_or_video=pred_image,
            conditional_dict=conditional_dict,
            unconditional_dict=unconditional_dict,
            gradient_mask=gradient_mask,
            denoised_timestep_from=denoised_timestep_from,
            denoised_timestep_to=denoised_timestep_to
        )

        return dmd_loss, dmd_log_dict

    def critic_loss(
        self,
        image_or_video_shape,
        conditional_dict: dict,
        unconditional_dict: dict,
        clean_latent: torch.Tensor,
        initial_latent: torch.Tensor = None
    ) -> Tuple[torch.Tensor, dict]:
        """
        Generate image/videos from noise and train the critic with generated samples.
        The noisy input to the generator is backward simulated.
        This removes the need of any datasets during distillation.
        See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
        Input:
            - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
            - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
            - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
            - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
        Output:
            - loss: a scalar tensor representing the generator loss.
            - critic_log_dict: a dictionary containing the intermediate tensors for logging.
        """

        # Step 1: Run generator on backward simulated noisy input
        with torch.no_grad():
            generated_image, _, denoised_timestep_from, denoised_timestep_to = self._run_generator(
                image_or_video_shape=image_or_video_shape,
                conditional_dict=conditional_dict,
                initial_latent=initial_latent
            )

        # Step 2: Compute the fake prediction
        min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
        max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
        critic_timestep = self._get_timestep(
            min_timestep,
            max_timestep,
            image_or_video_shape[0],
            image_or_video_shape[1],
            self.num_frame_per_block,
            uniform_timestep=True
        )

        if self.timestep_shift > 1:
            critic_timestep = self.timestep_shift * \
                (critic_timestep / 1000) / (1 + (self.timestep_shift - 1) * (critic_timestep / 1000)) * 1000

        critic_timestep = critic_timestep.clamp(self.min_step, self.max_step)

        critic_noise = torch.randn_like(generated_image)
        noisy_generated_image = self.scheduler.add_noise(
            generated_image.flatten(0, 1),
            critic_noise.flatten(0, 1),
            critic_timestep.flatten(0, 1)
        ).unflatten(0, image_or_video_shape[:2])

        _, pred_fake_image = self.fake_score(
            noisy_image_or_video=noisy_generated_image,
            conditional_dict=conditional_dict,
            timestep=critic_timestep
        )

        # Step 3: Compute the denoising loss for the fake critic
        if self.args.denoising_loss_type == "flow":
            from utils.wan_wrapper import WanDiffusionWrapper
            flow_pred = WanDiffusionWrapper._convert_x0_to_flow_pred(
                scheduler=self.scheduler,
                x0_pred=pred_fake_image.flatten(0, 1),
                xt=noisy_generated_image.flatten(0, 1),
                timestep=critic_timestep.flatten(0, 1)
            )
            pred_fake_noise = None
        else:
            flow_pred = None
            pred_fake_noise = self.scheduler.convert_x0_to_noise(
                x0=pred_fake_image.flatten(0, 1),
                xt=noisy_generated_image.flatten(0, 1),
                timestep=critic_timestep.flatten(0, 1)
            ).unflatten(0, image_or_video_shape[:2])

        denoising_loss = self.denoising_loss_func(
            x=generated_image.flatten(0, 1),
            x_pred=pred_fake_image.flatten(0, 1),
            noise=critic_noise.flatten(0, 1),
            noise_pred=pred_fake_noise,
            alphas_cumprod=self.scheduler.alphas_cumprod,
            timestep=critic_timestep.flatten(0, 1),
            flow_pred=flow_pred
        )

        # Step 5: Debugging Log
        critic_log_dict = {
            "critic_timestep": critic_timestep.detach()
        }

        return denoising_loss, critic_log_dict