Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,232 Bytes
0fd2f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import copy
from pipeline import SelfForcingTrainingPipeline
import torch.nn.functional as F
from typing import Tuple
import torch
from model.base import SelfForcingModel
class GAN(SelfForcingModel):
def __init__(self, args, device):
"""
Initialize the GAN module.
This class is self-contained and compute generator and fake score losses
in the forward pass.
"""
super().__init__(args, device)
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1)
self.same_step_across_blocks = getattr(args, "same_step_across_blocks", True)
self.concat_time_embeddings = getattr(args, "concat_time_embeddings", False)
self.num_class = args.num_class
self.relativistic_discriminator = getattr(args, "relativistic_discriminator", False)
if self.num_frame_per_block > 1:
self.generator.model.num_frame_per_block = self.num_frame_per_block
self.fake_score.adding_cls_branch(
atten_dim=1536, num_class=args.num_class, time_embed_dim=1536 if self.concat_time_embeddings else 0)
self.fake_score.model.requires_grad_(True)
self.independent_first_frame = getattr(args, "independent_first_frame", False)
if self.independent_first_frame:
self.generator.model.independent_first_frame = True
if args.gradient_checkpointing:
self.generator.enable_gradient_checkpointing()
self.fake_score.enable_gradient_checkpointing()
# this will be init later with fsdp-wrapped modules
self.inference_pipeline: SelfForcingTrainingPipeline = None
# Step 2: Initialize all dmd hyperparameters
self.num_train_timestep = args.num_train_timestep
self.min_step = int(0.02 * self.num_train_timestep)
self.max_step = int(0.98 * self.num_train_timestep)
if hasattr(args, "real_guidance_scale"):
self.real_guidance_scale = args.real_guidance_scale
self.fake_guidance_scale = args.fake_guidance_scale
else:
self.real_guidance_scale = args.guidance_scale
self.fake_guidance_scale = 0.0
self.timestep_shift = getattr(args, "timestep_shift", 1.0)
self.critic_timestep_shift = getattr(args, "critic_timestep_shift", self.timestep_shift)
self.ts_schedule = getattr(args, "ts_schedule", True)
self.ts_schedule_max = getattr(args, "ts_schedule_max", False)
self.min_score_timestep = getattr(args, "min_score_timestep", 0)
self.gan_g_weight = getattr(args, "gan_g_weight", 1e-2)
self.gan_d_weight = getattr(args, "gan_d_weight", 1e-2)
self.r1_weight = getattr(args, "r1_weight", 0.0)
self.r2_weight = getattr(args, "r2_weight", 0.0)
self.r1_sigma = getattr(args, "r1_sigma", 0.01)
self.r2_sigma = getattr(args, "r2_sigma", 0.01)
if getattr(self.scheduler, "alphas_cumprod", None) is not None:
self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device)
else:
self.scheduler.alphas_cumprod = None
def _run_cls_pred_branch(self,
noisy_image_or_video: torch.Tensor,
conditional_dict: dict,
timestep: torch.Tensor) -> torch.Tensor:
"""
Run the classifier prediction branch on the generated image or video.
Input:
- image_or_video: a tensor with shape [B, F, C, H, W].
Output:
- cls_pred: a tensor with shape [B, 1, 1, 1, 1] representing the feature map for classification.
"""
_, _, noisy_logit = self.fake_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=conditional_dict,
timestep=timestep,
classify_mode=True,
concat_time_embeddings=self.concat_time_embeddings
)
return noisy_logit
def generator_loss(
self,
image_or_video_shape,
conditional_dict: dict,
unconditional_dict: dict,
clean_latent: torch.Tensor,
initial_latent: torch.Tensor = None
) -> Tuple[torch.Tensor, dict]:
"""
Generate image/videos from noise and compute the DMD loss.
The noisy input to the generator is backward simulated.
This removes the need of any datasets during distillation.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
Output:
- loss: a scalar tensor representing the generator loss.
- generator_log_dict: a dictionary containing the intermediate tensors for logging.
"""
# Step 1: Unroll generator to obtain fake videos
pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
initial_latent=initial_latent
)
# Step 2: Get timestep and add noise to generated/real latents
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
critic_timestep = self._get_timestep(
min_timestep,
max_timestep,
image_or_video_shape[0],
image_or_video_shape[1],
self.num_frame_per_block,
uniform_timestep=True
)
if self.critic_timestep_shift > 1:
critic_timestep = self.critic_timestep_shift * \
(critic_timestep / 1000) / (1 + (self.critic_timestep_shift - 1) * (critic_timestep / 1000)) * 1000
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step)
critic_noise = torch.randn_like(pred_image)
noisy_fake_latent = self.scheduler.add_noise(
pred_image.flatten(0, 1),
critic_noise.flatten(0, 1),
critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
# Step 4: Compute the real GAN discriminator loss
real_image_or_video = clean_latent.clone()
critic_noise = torch.randn_like(real_image_or_video)
noisy_real_latent = self.scheduler.add_noise(
real_image_or_video.flatten(0, 1),
critic_noise.flatten(0, 1),
critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
conditional_dict["prompt_embeds"] = torch.concatenate(
(conditional_dict["prompt_embeds"], conditional_dict["prompt_embeds"]), dim=0)
critic_timestep = torch.concatenate((critic_timestep, critic_timestep), dim=0)
noisy_latent = torch.concatenate((noisy_fake_latent, noisy_real_latent), dim=0)
_, _, noisy_logit = self.fake_score(
noisy_image_or_video=noisy_latent,
conditional_dict=conditional_dict,
timestep=critic_timestep,
classify_mode=True,
concat_time_embeddings=self.concat_time_embeddings
)
noisy_fake_logit, noisy_real_logit = noisy_logit.chunk(2, dim=0)
if not self.relativistic_discriminator:
gan_G_loss = F.softplus(-noisy_fake_logit.float()).mean() * self.gan_g_weight
else:
relative_fake_logit = noisy_fake_logit - noisy_real_logit
gan_G_loss = F.softplus(-relative_fake_logit.float()).mean() * self.gan_g_weight
return gan_G_loss
def critic_loss(
self,
image_or_video_shape,
conditional_dict: dict,
unconditional_dict: dict,
clean_latent: torch.Tensor,
real_image_or_video: torch.Tensor,
initial_latent: torch.Tensor = None
) -> Tuple[torch.Tensor, dict]:
"""
Generate image/videos from noise and train the critic with generated samples.
The noisy input to the generator is backward simulated.
This removes the need of any datasets during distillation.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
Output:
- loss: a scalar tensor representing the generator loss.
- critic_log_dict: a dictionary containing the intermediate tensors for logging.
"""
# Step 1: Run generator on backward simulated noisy input
with torch.no_grad():
generated_image, _, denoised_timestep_from, denoised_timestep_to, num_sim_steps = self._run_generator(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
initial_latent=initial_latent
)
# Step 2: Get timestep and add noise to generated/real latents
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
critic_timestep = self._get_timestep(
min_timestep,
max_timestep,
image_or_video_shape[0],
image_or_video_shape[1],
self.num_frame_per_block,
uniform_timestep=True
)
if self.critic_timestep_shift > 1:
critic_timestep = self.critic_timestep_shift * \
(critic_timestep / 1000) / (1 + (self.critic_timestep_shift - 1) * (critic_timestep / 1000)) * 1000
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step)
critic_noise = torch.randn_like(generated_image)
noisy_fake_latent = self.scheduler.add_noise(
generated_image.flatten(0, 1),
critic_noise.flatten(0, 1),
critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
# Step 4: Compute the real GAN discriminator loss
noisy_real_latent = self.scheduler.add_noise(
real_image_or_video.flatten(0, 1),
critic_noise.flatten(0, 1),
critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
conditional_dict_cloned = copy.deepcopy(conditional_dict)
conditional_dict_cloned["prompt_embeds"] = torch.concatenate(
(conditional_dict_cloned["prompt_embeds"], conditional_dict_cloned["prompt_embeds"]), dim=0)
_, _, noisy_logit = self.fake_score(
noisy_image_or_video=torch.concatenate((noisy_fake_latent, noisy_real_latent), dim=0),
conditional_dict=conditional_dict_cloned,
timestep=torch.concatenate((critic_timestep, critic_timestep), dim=0),
classify_mode=True,
concat_time_embeddings=self.concat_time_embeddings
)
noisy_fake_logit, noisy_real_logit = noisy_logit.chunk(2, dim=0)
if not self.relativistic_discriminator:
gan_D_loss = F.softplus(-noisy_real_logit.float()).mean() + F.softplus(noisy_fake_logit.float()).mean()
else:
relative_real_logit = noisy_real_logit - noisy_fake_logit
gan_D_loss = F.softplus(-relative_real_logit.float()).mean()
gan_D_loss = gan_D_loss * self.gan_d_weight
# R1 regularization
if self.r1_weight > 0.:
noisy_real_latent_perturbed = noisy_real_latent.clone()
epison_real = self.r1_sigma * torch.randn_like(noisy_real_latent_perturbed)
noisy_real_latent_perturbed = noisy_real_latent_perturbed + epison_real
noisy_real_logit_perturbed = self._run_cls_pred_branch(
noisy_image_or_video=noisy_real_latent_perturbed,
conditional_dict=conditional_dict,
timestep=critic_timestep
)
r1_grad = (noisy_real_logit_perturbed - noisy_real_logit) / self.r1_sigma
r1_loss = self.r1_weight * torch.mean((r1_grad)**2)
else:
r1_loss = torch.zeros_like(gan_D_loss)
# R2 regularization
if self.r2_weight > 0.:
noisy_fake_latent_perturbed = noisy_fake_latent.clone()
epison_generated = self.r2_sigma * torch.randn_like(noisy_fake_latent_perturbed)
noisy_fake_latent_perturbed = noisy_fake_latent_perturbed + epison_generated
noisy_fake_logit_perturbed = self._run_cls_pred_branch(
noisy_image_or_video=noisy_fake_latent_perturbed,
conditional_dict=conditional_dict,
timestep=critic_timestep
)
r2_grad = (noisy_fake_logit_perturbed - noisy_fake_logit) / self.r2_sigma
r2_loss = self.r2_weight * torch.mean((r2_grad)**2)
else:
r2_loss = torch.zeros_like(r2_loss)
critic_log_dict = {
"critic_timestep": critic_timestep.detach(),
'noisy_real_logit': noisy_real_logit.detach(),
'noisy_fake_logit': noisy_fake_logit.detach(),
}
return (gan_D_loss, r1_loss, r2_loss), critic_log_dict
|