Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,638 Bytes
0fd2f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
from pipeline import SelfForcingTrainingPipeline
from typing import Optional, Tuple
import torch
from model.base import SelfForcingModel
class SiD(SelfForcingModel):
def __init__(self, args, device):
"""
Initialize the DMD (Distribution Matching Distillation) module.
This class is self-contained and compute generator and fake score losses
in the forward pass.
"""
super().__init__(args, device)
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1)
if self.num_frame_per_block > 1:
self.generator.model.num_frame_per_block = self.num_frame_per_block
if args.gradient_checkpointing:
self.generator.enable_gradient_checkpointing()
self.fake_score.enable_gradient_checkpointing()
self.real_score.enable_gradient_checkpointing()
# this will be init later with fsdp-wrapped modules
self.inference_pipeline: SelfForcingTrainingPipeline = None
# Step 2: Initialize all dmd hyperparameters
self.num_train_timestep = args.num_train_timestep
self.min_step = int(0.02 * self.num_train_timestep)
self.max_step = int(0.98 * self.num_train_timestep)
if hasattr(args, "real_guidance_scale"):
self.real_guidance_scale = args.real_guidance_scale
else:
self.real_guidance_scale = args.guidance_scale
self.timestep_shift = getattr(args, "timestep_shift", 1.0)
self.sid_alpha = getattr(args, "sid_alpha", 1.0)
self.ts_schedule = getattr(args, "ts_schedule", True)
self.ts_schedule_max = getattr(args, "ts_schedule_max", False)
if getattr(self.scheduler, "alphas_cumprod", None) is not None:
self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device)
else:
self.scheduler.alphas_cumprod = None
def compute_distribution_matching_loss(
self,
image_or_video: torch.Tensor,
conditional_dict: dict,
unconditional_dict: dict,
gradient_mask: Optional[torch.Tensor] = None,
denoised_timestep_from: int = 0,
denoised_timestep_to: int = 0
) -> Tuple[torch.Tensor, dict]:
"""
Compute the DMD loss (eq 7 in https://arxiv.org/abs/2311.18828).
Input:
- image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- gradient_mask: a boolean tensor with the same shape as image_or_video indicating which pixels to compute loss .
Output:
- dmd_loss: a scalar tensor representing the DMD loss.
- dmd_log_dict: a dictionary containing the intermediate tensors for logging.
"""
original_latent = image_or_video
batch_size, num_frame = image_or_video.shape[:2]
# Step 1: Randomly sample timestep based on the given schedule and corresponding noise
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
timestep = self._get_timestep(
min_timestep,
max_timestep,
batch_size,
num_frame,
self.num_frame_per_block,
uniform_timestep=True
)
if self.timestep_shift > 1:
timestep = self.timestep_shift * \
(timestep / 1000) / \
(1 + (self.timestep_shift - 1) * (timestep / 1000)) * 1000
timestep = timestep.clamp(self.min_step, self.max_step)
noise = torch.randn_like(image_or_video)
noisy_latent = self.scheduler.add_noise(
image_or_video.flatten(0, 1),
noise.flatten(0, 1),
timestep.flatten(0, 1)
).unflatten(0, (batch_size, num_frame))
# Step 2: SiD (May be wrap it?)
noisy_image_or_video = noisy_latent
# Step 2.1: Compute the fake score
_, pred_fake_image = self.fake_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=conditional_dict,
timestep=timestep
)
# Step 2.2: Compute the real score
# We compute the conditional and unconditional prediction
# and add them together to achieve cfg (https://arxiv.org/abs/2207.12598)
# NOTE: This step may cause OOM issue, which can be addressed by the CFG-free technique
_, pred_real_image_cond = self.real_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=conditional_dict,
timestep=timestep
)
_, pred_real_image_uncond = self.real_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=unconditional_dict,
timestep=timestep
)
pred_real_image = pred_real_image_cond + (
pred_real_image_cond - pred_real_image_uncond
) * self.real_guidance_scale
# Step 2.3: SiD Loss
# TODO: Add alpha
# TODO: Double?
sid_loss = (pred_real_image.double() - pred_fake_image.double()) * ((pred_real_image.double() - original_latent.double()) - self.sid_alpha * (pred_real_image.double() - pred_fake_image.double()))
# Step 2.4: Loss normalizer
with torch.no_grad():
p_real = (original_latent - pred_real_image)
normalizer = torch.abs(p_real).mean(dim=[1, 2, 3, 4], keepdim=True)
sid_loss = sid_loss / normalizer
sid_loss = torch.nan_to_num(sid_loss)
num_frame = sid_loss.shape[1]
sid_loss = sid_loss.mean()
sid_log_dict = {
"dmdtrain_gradient_norm": torch.zeros_like(sid_loss),
"timestep": timestep.detach()
}
return sid_loss, sid_log_dict
def generator_loss(
self,
image_or_video_shape,
conditional_dict: dict,
unconditional_dict: dict,
clean_latent: torch.Tensor,
initial_latent: torch.Tensor = None
) -> Tuple[torch.Tensor, dict]:
"""
Generate image/videos from noise and compute the DMD loss.
The noisy input to the generator is backward simulated.
This removes the need of any datasets during distillation.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
Output:
- loss: a scalar tensor representing the generator loss.
- generator_log_dict: a dictionary containing the intermediate tensors for logging.
"""
# Step 1: Unroll generator to obtain fake videos
pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
initial_latent=initial_latent
)
# Step 2: Compute the DMD loss
dmd_loss, dmd_log_dict = self.compute_distribution_matching_loss(
image_or_video=pred_image,
conditional_dict=conditional_dict,
unconditional_dict=unconditional_dict,
gradient_mask=gradient_mask,
denoised_timestep_from=denoised_timestep_from,
denoised_timestep_to=denoised_timestep_to
)
return dmd_loss, dmd_log_dict
def critic_loss(
self,
image_or_video_shape,
conditional_dict: dict,
unconditional_dict: dict,
clean_latent: torch.Tensor,
initial_latent: torch.Tensor = None
) -> Tuple[torch.Tensor, dict]:
"""
Generate image/videos from noise and train the critic with generated samples.
The noisy input to the generator is backward simulated.
This removes the need of any datasets during distillation.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
Output:
- loss: a scalar tensor representing the generator loss.
- critic_log_dict: a dictionary containing the intermediate tensors for logging.
"""
# Step 1: Run generator on backward simulated noisy input
with torch.no_grad():
generated_image, _, denoised_timestep_from, denoised_timestep_to = self._run_generator(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
initial_latent=initial_latent
)
# Step 2: Compute the fake prediction
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
critic_timestep = self._get_timestep(
min_timestep,
max_timestep,
image_or_video_shape[0],
image_or_video_shape[1],
self.num_frame_per_block,
uniform_timestep=True
)
if self.timestep_shift > 1:
critic_timestep = self.timestep_shift * \
(critic_timestep / 1000) / (1 + (self.timestep_shift - 1) * (critic_timestep / 1000)) * 1000
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step)
critic_noise = torch.randn_like(generated_image)
noisy_generated_image = self.scheduler.add_noise(
generated_image.flatten(0, 1),
critic_noise.flatten(0, 1),
critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
_, pred_fake_image = self.fake_score(
noisy_image_or_video=noisy_generated_image,
conditional_dict=conditional_dict,
timestep=critic_timestep
)
# Step 3: Compute the denoising loss for the fake critic
if self.args.denoising_loss_type == "flow":
from utils.wan_wrapper import WanDiffusionWrapper
flow_pred = WanDiffusionWrapper._convert_x0_to_flow_pred(
scheduler=self.scheduler,
x0_pred=pred_fake_image.flatten(0, 1),
xt=noisy_generated_image.flatten(0, 1),
timestep=critic_timestep.flatten(0, 1)
)
pred_fake_noise = None
else:
flow_pred = None
pred_fake_noise = self.scheduler.convert_x0_to_noise(
x0=pred_fake_image.flatten(0, 1),
xt=noisy_generated_image.flatten(0, 1),
timestep=critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
denoising_loss = self.denoising_loss_func(
x=generated_image.flatten(0, 1),
x_pred=pred_fake_image.flatten(0, 1),
noise=critic_noise.flatten(0, 1),
noise_pred=pred_fake_noise,
alphas_cumprod=self.scheduler.alphas_cumprod,
timestep=critic_timestep.flatten(0, 1),
flow_pred=flow_pred
)
# Step 5: Debugging Log
critic_log_dict = {
"critic_timestep": critic_timestep.detach()
}
return denoising_loss, critic_log_dict
|