File size: 16,465 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from tqdm import tqdm
from typing import List, Optional
import torch

from wan.utils.fm_solvers import FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper


class CausalDiffusionInferencePipeline(torch.nn.Module):
    def __init__(
            self,
            args,
            device,
            generator=None,
            text_encoder=None,
            vae=None
    ):
        super().__init__()
        # Step 1: Initialize all models
        self.generator = WanDiffusionWrapper(
            **getattr(args, "model_kwargs", {}), is_causal=True) if generator is None else generator
        self.text_encoder = WanTextEncoder() if text_encoder is None else text_encoder
        self.vae = WanVAEWrapper() if vae is None else vae

        # Step 2: Initialize scheduler
        self.num_train_timesteps = args.num_train_timestep
        self.sampling_steps = 50
        self.sample_solver = 'unipc'
        self.shift = args.timestep_shift

        self.num_transformer_blocks = 30
        self.frame_seq_length = 1560

        self.kv_cache_pos = None
        self.kv_cache_neg = None
        self.crossattn_cache_pos = None
        self.crossattn_cache_neg = None
        self.args = args
        self.num_frame_per_block = getattr(args, "num_frame_per_block", 1)
        self.independent_first_frame = args.independent_first_frame
        self.local_attn_size = self.generator.model.local_attn_size

        print(f"KV inference with {self.num_frame_per_block} frames per block")

        if self.num_frame_per_block > 1:
            self.generator.model.num_frame_per_block = self.num_frame_per_block

    def inference(
        self,
        noise: torch.Tensor,
        text_prompts: List[str],
        initial_latent: Optional[torch.Tensor] = None,
        return_latents: bool = False,
        start_frame_index: Optional[int] = 0
    ) -> torch.Tensor:
        """
        Perform inference on the given noise and text prompts.
        Inputs:
            noise (torch.Tensor): The input noise tensor of shape
                (batch_size, num_output_frames, num_channels, height, width).
            text_prompts (List[str]): The list of text prompts.
            initial_latent (torch.Tensor): The initial latent tensor of shape
                (batch_size, num_input_frames, num_channels, height, width).
                If num_input_frames is 1, perform image to video.
                If num_input_frames is greater than 1, perform video extension.
            return_latents (bool): Whether to return the latents.
            start_frame_index (int): In long video generation, where does the current window start?
        Outputs:
            video (torch.Tensor): The generated video tensor of shape
                (batch_size, num_frames, num_channels, height, width). It is normalized to be in the range [0, 1].
        """
        batch_size, num_frames, num_channels, height, width = noise.shape
        if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None):
            # If the first frame is independent and the first frame is provided, then the number of frames in the
            # noise should still be a multiple of num_frame_per_block
            assert num_frames % self.num_frame_per_block == 0
            num_blocks = num_frames // self.num_frame_per_block
        elif self.independent_first_frame and initial_latent is None:
            # Using a [1, 4, 4, 4, 4, 4] model to generate a video without image conditioning
            assert (num_frames - 1) % self.num_frame_per_block == 0
            num_blocks = (num_frames - 1) // self.num_frame_per_block
        num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0
        num_output_frames = num_frames + num_input_frames  # add the initial latent frames
        conditional_dict = self.text_encoder(
            text_prompts=text_prompts
        )
        unconditional_dict = self.text_encoder(
            text_prompts=[self.args.negative_prompt] * len(text_prompts)
        )

        output = torch.zeros(
            [batch_size, num_output_frames, num_channels, height, width],
            device=noise.device,
            dtype=noise.dtype
        )

        # Step 1: Initialize KV cache to all zeros
        if self.kv_cache_pos is None:
            self._initialize_kv_cache(
                batch_size=batch_size,
                dtype=noise.dtype,
                device=noise.device
            )
            self._initialize_crossattn_cache(
                batch_size=batch_size,
                dtype=noise.dtype,
                device=noise.device
            )
        else:
            # reset cross attn cache
            for block_index in range(self.num_transformer_blocks):
                self.crossattn_cache_pos[block_index]["is_init"] = False
                self.crossattn_cache_neg[block_index]["is_init"] = False
            # reset kv cache
            for block_index in range(len(self.kv_cache_pos)):
                self.kv_cache_pos[block_index]["global_end_index"] = torch.tensor(
                    [0], dtype=torch.long, device=noise.device)
                self.kv_cache_pos[block_index]["local_end_index"] = torch.tensor(
                    [0], dtype=torch.long, device=noise.device)
                self.kv_cache_neg[block_index]["global_end_index"] = torch.tensor(
                    [0], dtype=torch.long, device=noise.device)
                self.kv_cache_neg[block_index]["local_end_index"] = torch.tensor(
                    [0], dtype=torch.long, device=noise.device)

        # Step 2: Cache context feature
        current_start_frame = start_frame_index
        cache_start_frame = 0
        if initial_latent is not None:
            timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0
            if self.independent_first_frame:
                # Assume num_input_frames is 1 + self.num_frame_per_block * num_input_blocks
                assert (num_input_frames - 1) % self.num_frame_per_block == 0
                num_input_blocks = (num_input_frames - 1) // self.num_frame_per_block
                output[:, :1] = initial_latent[:, :1]
                self.generator(
                    noisy_image_or_video=initial_latent[:, :1],
                    conditional_dict=conditional_dict,
                    timestep=timestep * 0,
                    kv_cache=self.kv_cache_pos,
                    crossattn_cache=self.crossattn_cache_pos,
                    current_start=current_start_frame * self.frame_seq_length,
                    cache_start=cache_start_frame * self.frame_seq_length
                )
                self.generator(
                    noisy_image_or_video=initial_latent[:, :1],
                    conditional_dict=unconditional_dict,
                    timestep=timestep * 0,
                    kv_cache=self.kv_cache_neg,
                    crossattn_cache=self.crossattn_cache_neg,
                    current_start=current_start_frame * self.frame_seq_length,
                    cache_start=cache_start_frame * self.frame_seq_length
                )
                current_start_frame += 1
                cache_start_frame += 1
            else:
                # Assume num_input_frames is self.num_frame_per_block * num_input_blocks
                assert num_input_frames % self.num_frame_per_block == 0
                num_input_blocks = num_input_frames // self.num_frame_per_block

            for block_index in range(num_input_blocks):
                current_ref_latents = \
                    initial_latent[:, cache_start_frame:cache_start_frame + self.num_frame_per_block]
                output[:, cache_start_frame:cache_start_frame + self.num_frame_per_block] = current_ref_latents
                self.generator(
                    noisy_image_or_video=current_ref_latents,
                    conditional_dict=conditional_dict,
                    timestep=timestep * 0,
                    kv_cache=self.kv_cache_pos,
                    crossattn_cache=self.crossattn_cache_pos,
                    current_start=current_start_frame * self.frame_seq_length,
                    cache_start=cache_start_frame * self.frame_seq_length
                )
                self.generator(
                    noisy_image_or_video=current_ref_latents,
                    conditional_dict=unconditional_dict,
                    timestep=timestep * 0,
                    kv_cache=self.kv_cache_neg,
                    crossattn_cache=self.crossattn_cache_neg,
                    current_start=current_start_frame * self.frame_seq_length,
                    cache_start=cache_start_frame * self.frame_seq_length
                )
                current_start_frame += self.num_frame_per_block
                cache_start_frame += self.num_frame_per_block

        # Step 3: Temporal denoising loop
        all_num_frames = [self.num_frame_per_block] * num_blocks
        if self.independent_first_frame and initial_latent is None:
            all_num_frames = [1] + all_num_frames
        for current_num_frames in all_num_frames:
            noisy_input = noise[
                :, cache_start_frame - num_input_frames:cache_start_frame + current_num_frames - num_input_frames]
            latents = noisy_input

            # Step 3.1: Spatial denoising loop
            sample_scheduler = self._initialize_sample_scheduler(noise)
            for _, t in enumerate(tqdm(sample_scheduler.timesteps)):
                latent_model_input = latents
                timestep = t * torch.ones(
                    [batch_size, current_num_frames], device=noise.device, dtype=torch.float32
                )

                flow_pred_cond, _ = self.generator(
                    noisy_image_or_video=latent_model_input,
                    conditional_dict=conditional_dict,
                    timestep=timestep,
                    kv_cache=self.kv_cache_pos,
                    crossattn_cache=self.crossattn_cache_pos,
                    current_start=current_start_frame * self.frame_seq_length,
                    cache_start=cache_start_frame * self.frame_seq_length
                )
                flow_pred_uncond, _ = self.generator(
                    noisy_image_or_video=latent_model_input,
                    conditional_dict=unconditional_dict,
                    timestep=timestep,
                    kv_cache=self.kv_cache_neg,
                    crossattn_cache=self.crossattn_cache_neg,
                    current_start=current_start_frame * self.frame_seq_length,
                    cache_start=cache_start_frame * self.frame_seq_length
                )

                flow_pred = flow_pred_uncond + self.args.guidance_scale * (
                    flow_pred_cond - flow_pred_uncond)

                temp_x0 = sample_scheduler.step(
                    flow_pred,
                    t,
                    latents,
                    return_dict=False)[0]
                latents = temp_x0
                print(f"kv_cache['local_end_index']: {self.kv_cache_pos[0]['local_end_index']}")
                print(f"kv_cache['global_end_index']: {self.kv_cache_pos[0]['global_end_index']}")

            # Step 3.2: record the model's output
            output[:, cache_start_frame:cache_start_frame + current_num_frames] = latents

            # Step 3.3: rerun with timestep zero to update KV cache using clean context
            self.generator(
                noisy_image_or_video=latents,
                conditional_dict=conditional_dict,
                timestep=timestep * 0,
                kv_cache=self.kv_cache_pos,
                crossattn_cache=self.crossattn_cache_pos,
                current_start=current_start_frame * self.frame_seq_length,
                cache_start=cache_start_frame * self.frame_seq_length
            )
            self.generator(
                noisy_image_or_video=latents,
                conditional_dict=unconditional_dict,
                timestep=timestep * 0,
                kv_cache=self.kv_cache_neg,
                crossattn_cache=self.crossattn_cache_neg,
                current_start=current_start_frame * self.frame_seq_length,
                cache_start=cache_start_frame * self.frame_seq_length
            )

            # Step 3.4: update the start and end frame indices
            current_start_frame += current_num_frames
            cache_start_frame += current_num_frames

        # Step 4: Decode the output
        video = self.vae.decode_to_pixel(output)
        video = (video * 0.5 + 0.5).clamp(0, 1)

        if return_latents:
            return video, output
        else:
            return video

    def _initialize_kv_cache(self, batch_size, dtype, device):
        """
        Initialize a Per-GPU KV cache for the Wan model.
        """
        kv_cache_pos = []
        kv_cache_neg = []
        if self.local_attn_size != -1:
            # Use the local attention size to compute the KV cache size
            kv_cache_size = self.local_attn_size * self.frame_seq_length
        else:
            # Use the default KV cache size
            kv_cache_size = 32760

        for _ in range(self.num_transformer_blocks):
            kv_cache_pos.append({
                "k": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device),
                "global_end_index": torch.tensor([0], dtype=torch.long, device=device),
                "local_end_index": torch.tensor([0], dtype=torch.long, device=device)
            })
            kv_cache_neg.append({
                "k": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device),
                "global_end_index": torch.tensor([0], dtype=torch.long, device=device),
                "local_end_index": torch.tensor([0], dtype=torch.long, device=device)
            })

        self.kv_cache_pos = kv_cache_pos  # always store the clean cache
        self.kv_cache_neg = kv_cache_neg  # always store the clean cache

    def _initialize_crossattn_cache(self, batch_size, dtype, device):
        """
        Initialize a Per-GPU cross-attention cache for the Wan model.
        """
        crossattn_cache_pos = []
        crossattn_cache_neg = []
        for _ in range(self.num_transformer_blocks):
            crossattn_cache_pos.append({
                "k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "is_init": False
            })
            crossattn_cache_neg.append({
                "k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "is_init": False
            })

        self.crossattn_cache_pos = crossattn_cache_pos  # always store the clean cache
        self.crossattn_cache_neg = crossattn_cache_neg  # always store the clean cache

    def _initialize_sample_scheduler(self, noise):
        if self.sample_solver == 'unipc':
            sample_scheduler = FlowUniPCMultistepScheduler(
                num_train_timesteps=self.num_train_timesteps,
                shift=1,
                use_dynamic_shifting=False)
            sample_scheduler.set_timesteps(
                self.sampling_steps, device=noise.device, shift=self.shift)
            self.timesteps = sample_scheduler.timesteps
        elif self.sample_solver == 'dpm++':
            sample_scheduler = FlowDPMSolverMultistepScheduler(
                num_train_timesteps=self.num_train_timesteps,
                shift=1,
                use_dynamic_shifting=False)
            sampling_sigmas = get_sampling_sigmas(self.sampling_steps, self.shift)
            self.timesteps, _ = retrieve_timesteps(
                sample_scheduler,
                device=noise.device,
                sigmas=sampling_sigmas)
        else:
            raise NotImplementedError("Unsupported solver.")
        return sample_scheduler