Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,154 Bytes
0fd2f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from typing import List, Optional
import torch
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper
class CausalInferencePipeline(torch.nn.Module):
def __init__(
self,
args,
device,
generator=None,
text_encoder=None,
vae=None
):
super().__init__()
# Step 1: Initialize all models
self.generator = WanDiffusionWrapper(
**getattr(args, "model_kwargs", {}), is_causal=True) if generator is None else generator
self.text_encoder = WanTextEncoder() if text_encoder is None else text_encoder
self.vae = WanVAEWrapper() if vae is None else vae
# Step 2: Initialize all causal hyperparmeters
self.scheduler = self.generator.get_scheduler()
self.denoising_step_list = torch.tensor(
args.denoising_step_list, dtype=torch.long)
if args.warp_denoising_step:
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32)))
self.denoising_step_list = timesteps[1000 - self.denoising_step_list]
self.num_transformer_blocks = 30
self.frame_seq_length = 1560
self.kv_cache1 = None
self.args = args
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1)
self.independent_first_frame = args.independent_first_frame
self.local_attn_size = self.generator.model.local_attn_size
print(f"KV inference with {self.num_frame_per_block} frames per block")
if self.num_frame_per_block > 1:
self.generator.model.num_frame_per_block = self.num_frame_per_block
def inference(
self,
noise: torch.Tensor,
text_prompts: List[str],
initial_latent: Optional[torch.Tensor] = None,
return_latents: bool = False,
profile: bool = False
) -> torch.Tensor:
"""
Perform inference on the given noise and text prompts.
Inputs:
noise (torch.Tensor): The input noise tensor of shape
(batch_size, num_output_frames, num_channels, height, width).
text_prompts (List[str]): The list of text prompts.
initial_latent (torch.Tensor): The initial latent tensor of shape
(batch_size, num_input_frames, num_channels, height, width).
If num_input_frames is 1, perform image to video.
If num_input_frames is greater than 1, perform video extension.
return_latents (bool): Whether to return the latents.
Outputs:
video (torch.Tensor): The generated video tensor of shape
(batch_size, num_output_frames, num_channels, height, width).
It is normalized to be in the range [0, 1].
"""
batch_size, num_frames, num_channels, height, width = noise.shape
if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None):
# If the first frame is independent and the first frame is provided, then the number of frames in the
# noise should still be a multiple of num_frame_per_block
assert num_frames % self.num_frame_per_block == 0
num_blocks = num_frames // self.num_frame_per_block
else:
# Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning
assert (num_frames - 1) % self.num_frame_per_block == 0
num_blocks = (num_frames - 1) // self.num_frame_per_block
num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0
num_output_frames = num_frames + num_input_frames # add the initial latent frames
conditional_dict = self.text_encoder(
text_prompts=text_prompts
)
output = torch.zeros(
[batch_size, num_output_frames, num_channels, height, width],
device=noise.device,
dtype=noise.dtype
)
# Set up profiling if requested
if profile:
init_start = torch.cuda.Event(enable_timing=True)
init_end = torch.cuda.Event(enable_timing=True)
diffusion_start = torch.cuda.Event(enable_timing=True)
diffusion_end = torch.cuda.Event(enable_timing=True)
vae_start = torch.cuda.Event(enable_timing=True)
vae_end = torch.cuda.Event(enable_timing=True)
block_times = []
block_start = torch.cuda.Event(enable_timing=True)
block_end = torch.cuda.Event(enable_timing=True)
init_start.record()
# Step 1: Initialize KV cache to all zeros
if self.kv_cache1 is None:
self._initialize_kv_cache(
batch_size=batch_size,
dtype=noise.dtype,
device=noise.device
)
self._initialize_crossattn_cache(
batch_size=batch_size,
dtype=noise.dtype,
device=noise.device
)
else:
# reset cross attn cache
for block_index in range(self.num_transformer_blocks):
self.crossattn_cache[block_index]["is_init"] = False
# reset kv cache
for block_index in range(len(self.kv_cache1)):
self.kv_cache1[block_index]["global_end_index"] = torch.tensor(
[0], dtype=torch.long, device=noise.device)
self.kv_cache1[block_index]["local_end_index"] = torch.tensor(
[0], dtype=torch.long, device=noise.device)
# Step 2: Cache context feature
current_start_frame = 0
if initial_latent is not None:
timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0
if self.independent_first_frame:
# Assume num_input_frames is 1 + self.num_frame_per_block * num_input_blocks
assert (num_input_frames - 1) % self.num_frame_per_block == 0
num_input_blocks = (num_input_frames - 1) // self.num_frame_per_block
output[:, :1] = initial_latent[:, :1]
self.generator(
noisy_image_or_video=initial_latent[:, :1],
conditional_dict=conditional_dict,
timestep=timestep * 0,
kv_cache=self.kv_cache1,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length,
)
current_start_frame += 1
else:
# Assume num_input_frames is self.num_frame_per_block * num_input_blocks
assert num_input_frames % self.num_frame_per_block == 0
num_input_blocks = num_input_frames // self.num_frame_per_block
for _ in range(num_input_blocks):
current_ref_latents = \
initial_latent[:, current_start_frame:current_start_frame + self.num_frame_per_block]
output[:, current_start_frame:current_start_frame + self.num_frame_per_block] = current_ref_latents
self.generator(
noisy_image_or_video=current_ref_latents,
conditional_dict=conditional_dict,
timestep=timestep * 0,
kv_cache=self.kv_cache1,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length,
)
current_start_frame += self.num_frame_per_block
if profile:
init_end.record()
torch.cuda.synchronize()
diffusion_start.record()
# Step 3: Temporal denoising loop
all_num_frames = [self.num_frame_per_block] * num_blocks
if self.independent_first_frame and initial_latent is None:
all_num_frames = [1] + all_num_frames
for current_num_frames in all_num_frames:
if profile:
block_start.record()
noisy_input = noise[
:, current_start_frame - num_input_frames:current_start_frame + current_num_frames - num_input_frames]
# Step 3.1: Spatial denoising loop
for index, current_timestep in enumerate(self.denoising_step_list):
print(f"current_timestep: {current_timestep}")
# set current timestep
timestep = torch.ones(
[batch_size, current_num_frames],
device=noise.device,
dtype=torch.int64) * current_timestep
if index < len(self.denoising_step_list) - 1:
_, denoised_pred = self.generator(
noisy_image_or_video=noisy_input,
conditional_dict=conditional_dict,
timestep=timestep,
kv_cache=self.kv_cache1,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
next_timestep = self.denoising_step_list[index + 1]
noisy_input = self.scheduler.add_noise(
denoised_pred.flatten(0, 1),
torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones(
[batch_size * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
else:
# for getting real output
_, denoised_pred = self.generator(
noisy_image_or_video=noisy_input,
conditional_dict=conditional_dict,
timestep=timestep,
kv_cache=self.kv_cache1,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length
)
# Step 3.2: record the model's output
output[:, current_start_frame:current_start_frame + current_num_frames] = denoised_pred
# Step 3.3: rerun with timestep zero to update KV cache using clean context
context_timestep = torch.ones_like(timestep) * self.args.context_noise
self.generator(
noisy_image_or_video=denoised_pred,
conditional_dict=conditional_dict,
timestep=context_timestep,
kv_cache=self.kv_cache1,
crossattn_cache=self.crossattn_cache,
current_start=current_start_frame * self.frame_seq_length,
)
if profile:
block_end.record()
torch.cuda.synchronize()
block_time = block_start.elapsed_time(block_end)
block_times.append(block_time)
# Step 3.4: update the start and end frame indices
current_start_frame += current_num_frames
if profile:
# End diffusion timing and synchronize CUDA
diffusion_end.record()
torch.cuda.synchronize()
diffusion_time = diffusion_start.elapsed_time(diffusion_end)
init_time = init_start.elapsed_time(init_end)
vae_start.record()
# Step 4: Decode the output
video = self.vae.decode_to_pixel(output, use_cache=False)
video = (video * 0.5 + 0.5).clamp(0, 1)
if profile:
# End VAE timing and synchronize CUDA
vae_end.record()
torch.cuda.synchronize()
vae_time = vae_start.elapsed_time(vae_end)
total_time = init_time + diffusion_time + vae_time
print("Profiling results:")
print(f" - Initialization/caching time: {init_time:.2f} ms ({100 * init_time / total_time:.2f}%)")
print(f" - Diffusion generation time: {diffusion_time:.2f} ms ({100 * diffusion_time / total_time:.2f}%)")
for i, block_time in enumerate(block_times):
print(f" - Block {i} generation time: {block_time:.2f} ms ({100 * block_time / diffusion_time:.2f}% of diffusion)")
print(f" - VAE decoding time: {vae_time:.2f} ms ({100 * vae_time / total_time:.2f}%)")
print(f" - Total time: {total_time:.2f} ms")
if return_latents:
return video, output
else:
return video
def _initialize_kv_cache(self, batch_size, dtype, device):
"""
Initialize a Per-GPU KV cache for the Wan model.
"""
kv_cache1 = []
if self.local_attn_size != -1:
# Use the local attention size to compute the KV cache size
kv_cache_size = self.local_attn_size * self.frame_seq_length
else:
# Use the default KV cache size
kv_cache_size = 32760
for _ in range(self.num_transformer_blocks):
kv_cache1.append({
"k": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device),
"v": torch.zeros([batch_size, kv_cache_size, 12, 128], dtype=dtype, device=device),
"global_end_index": torch.tensor([0], dtype=torch.long, device=device),
"local_end_index": torch.tensor([0], dtype=torch.long, device=device)
})
self.kv_cache1 = kv_cache1 # always store the clean cache
def _initialize_crossattn_cache(self, batch_size, dtype, device):
"""
Initialize a Per-GPU cross-attention cache for the Wan model.
"""
crossattn_cache = []
for _ in range(self.num_transformer_blocks):
crossattn_cache.append({
"k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
"v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
"is_init": False
})
self.crossattn_cache = crossattn_cache
|