File size: 12,841 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from utils.wan_wrapper import WanDiffusionWrapper
from utils.scheduler import SchedulerInterface
from typing import List, Optional
import torch
import torch.distributed as dist


class SelfForcingTrainingPipeline:
    def __init__(self,
                 denoising_step_list: List[int],
                 scheduler: SchedulerInterface,
                 generator: WanDiffusionWrapper,
                 num_frame_per_block=3,
                 independent_first_frame: bool = False,
                 same_step_across_blocks: bool = False,
                 last_step_only: bool = False,
                 num_max_frames: int = 21,
                 context_noise: int = 0,
                 **kwargs):
        super().__init__()
        self.scheduler = scheduler
        self.generator = generator
        self.denoising_step_list = denoising_step_list
        if self.denoising_step_list[-1] == 0:
            self.denoising_step_list = self.denoising_step_list[:-1]  # remove the zero timestep for inference

        # Wan specific hyperparameters
        self.num_transformer_blocks = 30
        self.frame_seq_length = 1560
        self.num_frame_per_block = num_frame_per_block
        self.context_noise = context_noise
        self.i2v = False

        self.kv_cache1 = None
        self.kv_cache2 = None
        self.independent_first_frame = independent_first_frame
        self.same_step_across_blocks = same_step_across_blocks
        self.last_step_only = last_step_only
        self.kv_cache_size = num_max_frames * self.frame_seq_length

    def generate_and_sync_list(self, num_blocks, num_denoising_steps, device):
        rank = dist.get_rank() if dist.is_initialized() else 0

        if rank == 0:
            # Generate random indices
            indices = torch.randint(
                low=0,
                high=num_denoising_steps,
                size=(num_blocks,),
                device=device
            )
            if self.last_step_only:
                indices = torch.ones_like(indices) * (num_denoising_steps - 1)
        else:
            indices = torch.empty(num_blocks, dtype=torch.long, device=device)

        dist.broadcast(indices, src=0)  # Broadcast the random indices to all ranks
        return indices.tolist()

    def inference_with_trajectory(
            self,
            noise: torch.Tensor,
            initial_latent: Optional[torch.Tensor] = None,
            return_sim_step: bool = False,
            **conditional_dict
    ) -> torch.Tensor:
        batch_size, num_frames, num_channels, height, width = noise.shape
        if not self.independent_first_frame or (self.independent_first_frame and initial_latent is not None):
            # If the first frame is independent and the first frame is provided, then the number of frames in the
            # noise should still be a multiple of num_frame_per_block
            assert num_frames % self.num_frame_per_block == 0
            num_blocks = num_frames // self.num_frame_per_block
        else:
            # Using a [1, 4, 4, 4, 4, 4, ...] model to generate a video without image conditioning
            assert (num_frames - 1) % self.num_frame_per_block == 0
            num_blocks = (num_frames - 1) // self.num_frame_per_block
        num_input_frames = initial_latent.shape[1] if initial_latent is not None else 0
        num_output_frames = num_frames + num_input_frames  # add the initial latent frames
        output = torch.zeros(
            [batch_size, num_output_frames, num_channels, height, width],
            device=noise.device,
            dtype=noise.dtype
        )

        # Step 1: Initialize KV cache to all zeros
        self._initialize_kv_cache(
            batch_size=batch_size, dtype=noise.dtype, device=noise.device
        )
        self._initialize_crossattn_cache(
            batch_size=batch_size, dtype=noise.dtype, device=noise.device
        )
        # if self.kv_cache1 is None:
        #     self._initialize_kv_cache(
        #         batch_size=batch_size,
        #         dtype=noise.dtype,
        #         device=noise.device,
        #     )
        #     self._initialize_crossattn_cache(
        #         batch_size=batch_size,
        #         dtype=noise.dtype,
        #         device=noise.device
        #     )
        # else:
        #     # reset cross attn cache
        #     for block_index in range(self.num_transformer_blocks):
        #         self.crossattn_cache[block_index]["is_init"] = False
        #     # reset kv cache
        #     for block_index in range(len(self.kv_cache1)):
        #         self.kv_cache1[block_index]["global_end_index"] = torch.tensor(
        #             [0], dtype=torch.long, device=noise.device)
        #         self.kv_cache1[block_index]["local_end_index"] = torch.tensor(
        #             [0], dtype=torch.long, device=noise.device)

        # Step 2: Cache context feature
        current_start_frame = 0
        if initial_latent is not None:
            timestep = torch.ones([batch_size, 1], device=noise.device, dtype=torch.int64) * 0
            # Assume num_input_frames is 1 + self.num_frame_per_block * num_input_blocks
            output[:, :1] = initial_latent
            with torch.no_grad():
                self.generator(
                    noisy_image_or_video=initial_latent,
                    conditional_dict=conditional_dict,
                    timestep=timestep * 0,
                    kv_cache=self.kv_cache1,
                    crossattn_cache=self.crossattn_cache,
                    current_start=current_start_frame * self.frame_seq_length
                )
            current_start_frame += 1

        # Step 3: Temporal denoising loop
        all_num_frames = [self.num_frame_per_block] * num_blocks
        if self.independent_first_frame and initial_latent is None:
            all_num_frames = [1] + all_num_frames
        num_denoising_steps = len(self.denoising_step_list)
        exit_flags = self.generate_and_sync_list(len(all_num_frames), num_denoising_steps, device=noise.device)
        start_gradient_frame_index = num_output_frames - 21

        # for block_index in range(num_blocks):
        for block_index, current_num_frames in enumerate(all_num_frames):
            noisy_input = noise[
                :, current_start_frame - num_input_frames:current_start_frame + current_num_frames - num_input_frames]

            # Step 3.1: Spatial denoising loop
            for index, current_timestep in enumerate(self.denoising_step_list):
                if self.same_step_across_blocks:
                    exit_flag = (index == exit_flags[0])
                else:
                    exit_flag = (index == exit_flags[block_index])  # Only backprop at the randomly selected timestep (consistent across all ranks)
                timestep = torch.ones(
                    [batch_size, current_num_frames],
                    device=noise.device,
                    dtype=torch.int64) * current_timestep

                if not exit_flag:
                    with torch.no_grad():
                        _, denoised_pred = self.generator(
                            noisy_image_or_video=noisy_input,
                            conditional_dict=conditional_dict,
                            timestep=timestep,
                            kv_cache=self.kv_cache1,
                            crossattn_cache=self.crossattn_cache,
                            current_start=current_start_frame * self.frame_seq_length
                        )
                        next_timestep = self.denoising_step_list[index + 1]
                        noisy_input = self.scheduler.add_noise(
                            denoised_pred.flatten(0, 1),
                            torch.randn_like(denoised_pred.flatten(0, 1)),
                            next_timestep * torch.ones(
                                [batch_size * current_num_frames], device=noise.device, dtype=torch.long)
                        ).unflatten(0, denoised_pred.shape[:2])
                else:
                    # for getting real output
                    # with torch.set_grad_enabled(current_start_frame >= start_gradient_frame_index):
                    if current_start_frame < start_gradient_frame_index:
                        with torch.no_grad():
                            _, denoised_pred = self.generator(
                                noisy_image_or_video=noisy_input,
                                conditional_dict=conditional_dict,
                                timestep=timestep,
                                kv_cache=self.kv_cache1,
                                crossattn_cache=self.crossattn_cache,
                                current_start=current_start_frame * self.frame_seq_length
                            )
                    else:
                        _, denoised_pred = self.generator(
                            noisy_image_or_video=noisy_input,
                            conditional_dict=conditional_dict,
                            timestep=timestep,
                            kv_cache=self.kv_cache1,
                            crossattn_cache=self.crossattn_cache,
                            current_start=current_start_frame * self.frame_seq_length
                        )
                    break

            # Step 3.2: record the model's output
            output[:, current_start_frame:current_start_frame + current_num_frames] = denoised_pred

            # Step 3.3: rerun with timestep zero to update the cache
            context_timestep = torch.ones_like(timestep) * self.context_noise
            # add context noise
            denoised_pred = self.scheduler.add_noise(
                denoised_pred.flatten(0, 1),
                torch.randn_like(denoised_pred.flatten(0, 1)),
                context_timestep * torch.ones(
                    [batch_size * current_num_frames], device=noise.device, dtype=torch.long)
            ).unflatten(0, denoised_pred.shape[:2])
            with torch.no_grad():
                self.generator(
                    noisy_image_or_video=denoised_pred,
                    conditional_dict=conditional_dict,
                    timestep=context_timestep,
                    kv_cache=self.kv_cache1,
                    crossattn_cache=self.crossattn_cache,
                    current_start=current_start_frame * self.frame_seq_length
                )

            # Step 3.4: update the start and end frame indices
            current_start_frame += current_num_frames

        # Step 3.5: Return the denoised timestep
        if not self.same_step_across_blocks:
            denoised_timestep_from, denoised_timestep_to = None, None
        elif exit_flags[0] == len(self.denoising_step_list) - 1:
            denoised_timestep_to = 0
            denoised_timestep_from = 1000 - torch.argmin(
                (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item()
        else:
            denoised_timestep_to = 1000 - torch.argmin(
                (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0] + 1].cuda()).abs(), dim=0).item()
            denoised_timestep_from = 1000 - torch.argmin(
                (self.scheduler.timesteps.cuda() - self.denoising_step_list[exit_flags[0]].cuda()).abs(), dim=0).item()

        if return_sim_step:
            return output, denoised_timestep_from, denoised_timestep_to, exit_flags[0] + 1

        return output, denoised_timestep_from, denoised_timestep_to

    def _initialize_kv_cache(self, batch_size, dtype, device):
        """
        Initialize a Per-GPU KV cache for the Wan model.
        """
        kv_cache1 = []

        for _ in range(self.num_transformer_blocks):
            kv_cache1.append({
                "k": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, self.kv_cache_size, 12, 128], dtype=dtype, device=device),
                "global_end_index": torch.tensor([0], dtype=torch.long, device=device),
                "local_end_index": torch.tensor([0], dtype=torch.long, device=device)
            })

        self.kv_cache1 = kv_cache1  # always store the clean cache

    def _initialize_crossattn_cache(self, batch_size, dtype, device):
        """
        Initialize a Per-GPU cross-attention cache for the Wan model.
        """
        crossattn_cache = []

        for _ in range(self.num_transformer_blocks):
            crossattn_cache.append({
                "k": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "v": torch.zeros([batch_size, 512, 12, 128], dtype=dtype, device=device),
                "is_init": False
            })
        self.crossattn_cache = crossattn_cache