File size: 4,065 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from utils.distributed import launch_distributed_job
from utils.scheduler import FlowMatchScheduler
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
from utils.dataset import TextDataset
import torch.distributed as dist
from tqdm import tqdm
import argparse
import torch
import math
import os


def init_model(device):
    model = WanDiffusionWrapper().to(device).to(torch.float32)
    encoder = WanTextEncoder().to(device).to(torch.float32)
    model.model.requires_grad_(False)

    scheduler = FlowMatchScheduler(
        shift=8.0, sigma_min=0.0, extra_one_step=True)
    scheduler.set_timesteps(num_inference_steps=48, denoising_strength=1.0)
    scheduler.sigmas = scheduler.sigmas.to(device)

    sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'

    unconditional_dict = encoder(
        text_prompts=[sample_neg_prompt]
    )

    return model, encoder, scheduler, unconditional_dict


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--output_folder", type=str)
    parser.add_argument("--caption_path", type=str)
    parser.add_argument("--guidance_scale", type=float, default=6.0)

    args = parser.parse_args()

    # launch_distributed_job()
    launch_distributed_job()

    device = torch.cuda.current_device()

    torch.set_grad_enabled(False)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

    model, encoder, scheduler, unconditional_dict = init_model(device=device)

    dataset = TextDataset(args.caption_path)

    # if global_rank == 0:
    os.makedirs(args.output_folder, exist_ok=True)

    for index in tqdm(range(int(math.ceil(len(dataset) / dist.get_world_size()))), disable=dist.get_rank() != 0):
        prompt_index = index * dist.get_world_size() + dist.get_rank()
        if prompt_index >= len(dataset):
            continue
        prompt = dataset[prompt_index]

        conditional_dict = encoder(text_prompts=prompt)

        latents = torch.randn(
            [1, 21, 16, 60, 104], dtype=torch.float32, device=device
        )

        noisy_input = []

        for progress_id, t in enumerate(tqdm(scheduler.timesteps)):
            timestep = t * \
                torch.ones([1, 21], device=device, dtype=torch.float32)

            noisy_input.append(latents)

            _, x0_pred_cond = model(
                latents, conditional_dict, timestep
            )

            _, x0_pred_uncond = model(
                latents, unconditional_dict, timestep
            )

            x0_pred = x0_pred_uncond + args.guidance_scale * (
                x0_pred_cond - x0_pred_uncond
            )

            flow_pred = model._convert_x0_to_flow_pred(
                scheduler=scheduler,
                x0_pred=x0_pred.flatten(0, 1),
                xt=latents.flatten(0, 1),
                timestep=timestep.flatten(0, 1)
            ).unflatten(0, x0_pred.shape[:2])

            latents = scheduler.step(
                flow_pred.flatten(0, 1),
                scheduler.timesteps[progress_id] * torch.ones(
                    [1, 21], device=device, dtype=torch.long).flatten(0, 1),
                latents.flatten(0, 1)
            ).unflatten(dim=0, sizes=flow_pred.shape[:2])

        noisy_input.append(latents)

        noisy_inputs = torch.stack(noisy_input, dim=1)

        noisy_inputs = noisy_inputs[:, [0, 12, 24, 36, -1]]

        stored_data = noisy_inputs

        torch.save(
            {prompt: stored_data.cpu().detach()},
            os.path.join(args.output_folder, f"{prompt_index:05d}.pt")
        )

    dist.barrier()


if __name__ == "__main__":
    main()