File size: 10,384 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gc
import logging

from model import CausalDiffusion
from utils.dataset import ShardingLMDBDataset, cycle
from utils.misc import set_seed
import torch.distributed as dist
from omegaconf import OmegaConf
import torch
import wandb
import time
import os

from utils.distributed import EMA_FSDP, barrier, fsdp_wrap, fsdp_state_dict, launch_distributed_job


class Trainer:
    def __init__(self, config):
        self.config = config
        self.step = 0

        # Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.)
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

        launch_distributed_job()
        global_rank = dist.get_rank()

        self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32
        self.device = torch.cuda.current_device()
        self.is_main_process = global_rank == 0
        self.causal = config.causal
        self.disable_wandb = config.disable_wandb

        # use a random seed for the training
        if config.seed == 0:
            random_seed = torch.randint(0, 10000000, (1,), device=self.device)
            dist.broadcast(random_seed, src=0)
            config.seed = random_seed.item()

        set_seed(config.seed + global_rank)

        if self.is_main_process and not self.disable_wandb:
            wandb.login(host=config.wandb_host, key=config.wandb_key)
            wandb.init(
                config=OmegaConf.to_container(config, resolve=True),
                name=config.config_name,
                mode="online",
                entity=config.wandb_entity,
                project=config.wandb_project,
                dir=config.wandb_save_dir
            )

        self.output_path = config.logdir

        # Step 2: Initialize the model and optimizer
        self.model = CausalDiffusion(config, device=self.device)
        self.model.generator = fsdp_wrap(
            self.model.generator,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.generator_fsdp_wrap_strategy
        )

        self.model.text_encoder = fsdp_wrap(
            self.model.text_encoder,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.text_encoder_fsdp_wrap_strategy
        )

        if not config.no_visualize or config.load_raw_video:
            self.model.vae = self.model.vae.to(
                device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32)

        self.generator_optimizer = torch.optim.AdamW(
            [param for param in self.model.generator.parameters()
             if param.requires_grad],
            lr=config.lr,
            betas=(config.beta1, config.beta2),
            weight_decay=config.weight_decay
        )

        # Step 3: Initialize the dataloader
        dataset = ShardingLMDBDataset(config.data_path, max_pair=int(1e8))
        sampler = torch.utils.data.distributed.DistributedSampler(
            dataset, shuffle=True, drop_last=True)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=config.batch_size,
            sampler=sampler,
            num_workers=8)

        if dist.get_rank() == 0:
            print("DATASET SIZE %d" % len(dataset))
        self.dataloader = cycle(dataloader)

        ##############################################################################################################
        # 6. Set up EMA parameter containers
        rename_param = (
            lambda name: name.replace("_fsdp_wrapped_module.", "")
            .replace("_checkpoint_wrapped_module.", "")
            .replace("_orig_mod.", "")
        )
        self.name_to_trainable_params = {}
        for n, p in self.model.generator.named_parameters():
            if not p.requires_grad:
                continue

            renamed_n = rename_param(n)
            self.name_to_trainable_params[renamed_n] = p
        ema_weight = config.ema_weight
        self.generator_ema = None
        if (ema_weight is not None) and (ema_weight > 0.0):
            print(f"Setting up EMA with weight {ema_weight}")
            self.generator_ema = EMA_FSDP(self.model.generator, decay=ema_weight)

        ##############################################################################################################
        # 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts
        if getattr(config, "generator_ckpt", False):
            print(f"Loading pretrained generator from {config.generator_ckpt}")
            state_dict = torch.load(config.generator_ckpt, map_location="cpu")
            if "generator" in state_dict:
                state_dict = state_dict["generator"]
            elif "model" in state_dict:
                state_dict = state_dict["model"]
            self.model.generator.load_state_dict(
                state_dict, strict=True
            )

        ##############################################################################################################

        # Let's delete EMA params for early steps to save some computes at training and inference
        if self.step < config.ema_start_step:
            self.generator_ema = None

        self.max_grad_norm = 10.0
        self.previous_time = None

    def save(self):
        print("Start gathering distributed model states...")
        generator_state_dict = fsdp_state_dict(
            self.model.generator)

        if self.config.ema_start_step < self.step:
            state_dict = {
                "generator": generator_state_dict,
                "generator_ema": self.generator_ema.state_dict(),
            }
        else:
            state_dict = {
                "generator": generator_state_dict,
            }

        if self.is_main_process:
            os.makedirs(os.path.join(self.output_path,
                        f"checkpoint_model_{self.step:06d}"), exist_ok=True)
            torch.save(state_dict, os.path.join(self.output_path,
                       f"checkpoint_model_{self.step:06d}", "model.pt"))
            print("Model saved to", os.path.join(self.output_path,
                  f"checkpoint_model_{self.step:06d}", "model.pt"))

    def train_one_step(self, batch):
        self.log_iters = 1

        if self.step % 20 == 0:
            torch.cuda.empty_cache()

        # Step 1: Get the next batch of text prompts
        text_prompts = batch["prompts"]
        if not self.config.load_raw_video:  # precomputed latent
            clean_latent = batch["ode_latent"][:, -1].to(
                device=self.device, dtype=self.dtype)
        else:  # encode raw video to latent
            frames = batch["frames"].to(
                device=self.device, dtype=self.dtype)
            with torch.no_grad():
                clean_latent = self.model.vae.encode_to_latent(
                    frames).to(device=self.device, dtype=self.dtype)
        image_latent = clean_latent[:, 0:1, ]

        batch_size = len(text_prompts)
        image_or_video_shape = list(self.config.image_or_video_shape)
        image_or_video_shape[0] = batch_size

        # Step 2: Extract the conditional infos
        with torch.no_grad():
            conditional_dict = self.model.text_encoder(
                text_prompts=text_prompts)

            if not getattr(self, "unconditional_dict", None):
                unconditional_dict = self.model.text_encoder(
                    text_prompts=[self.config.negative_prompt] * batch_size)
                unconditional_dict = {k: v.detach()
                                      for k, v in unconditional_dict.items()}
                self.unconditional_dict = unconditional_dict  # cache the unconditional_dict
            else:
                unconditional_dict = self.unconditional_dict

        # Step 3: Train the generator
        generator_loss, log_dict = self.model.generator_loss(
            image_or_video_shape=image_or_video_shape,
            conditional_dict=conditional_dict,
            unconditional_dict=unconditional_dict,
            clean_latent=clean_latent,
            initial_latent=image_latent
        )
        self.generator_optimizer.zero_grad()
        generator_loss.backward()
        generator_grad_norm = self.model.generator.clip_grad_norm_(
            self.max_grad_norm)
        self.generator_optimizer.step()

        # Increment the step since we finished gradient update
        self.step += 1

        wandb_loss_dict = {
            "generator_loss": generator_loss.item(),
            "generator_grad_norm": generator_grad_norm.item(),
        }

        # Step 4: Logging
        if self.is_main_process:
            if not self.disable_wandb:
                wandb.log(wandb_loss_dict, step=self.step)

        if self.step % self.config.gc_interval == 0:
            if dist.get_rank() == 0:
                logging.info("DistGarbageCollector: Running GC.")
            gc.collect()

        # Step 5. Create EMA params
        # TODO: Implement EMA

    def generate_video(self, pipeline, prompts, image=None):
        batch_size = len(prompts)
        sampled_noise = torch.randn(
            [batch_size, 21, 16, 60, 104], device="cuda", dtype=self.dtype
        )
        video, _ = pipeline.inference(
            noise=sampled_noise,
            text_prompts=prompts,
            return_latents=True
        )
        current_video = video.permute(0, 1, 3, 4, 2).cpu().numpy() * 255.0
        return current_video

    def train(self):
        while True:
            batch = next(self.dataloader)
            self.train_one_step(batch)
            if (not self.config.no_save) and self.step % self.config.log_iters == 0:
                torch.cuda.empty_cache()
                self.save()
                torch.cuda.empty_cache()

            barrier()
            if self.is_main_process:
                current_time = time.time()
                if self.previous_time is None:
                    self.previous_time = current_time
                else:
                    if not self.disable_wandb:
                        wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step)
                    self.previous_time = current_time