Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,792 Bytes
0fd2f06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import gc
import logging
from utils.dataset import ShardingLMDBDataset, cycle
from utils.dataset import TextDataset
from utils.distributed import EMA_FSDP, fsdp_wrap, fsdp_state_dict, launch_distributed_job
from utils.misc import (
set_seed,
merge_dict_list
)
import torch.distributed as dist
from omegaconf import OmegaConf
from model import CausVid, DMD, SiD
import torch
import wandb
import time
import os
class Trainer:
def __init__(self, config):
self.config = config
self.step = 0
# Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
launch_distributed_job()
global_rank = dist.get_rank()
self.world_size = dist.get_world_size()
self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32
self.device = torch.cuda.current_device()
self.is_main_process = global_rank == 0
self.causal = config.causal
self.disable_wandb = config.disable_wandb
# use a random seed for the training
if config.seed == 0:
random_seed = torch.randint(0, 10000000, (1,), device=self.device)
dist.broadcast(random_seed, src=0)
config.seed = random_seed.item()
set_seed(config.seed + global_rank)
if self.is_main_process and not self.disable_wandb:
wandb.login(host=config.wandb_host, key=config.wandb_key)
wandb.init(
config=OmegaConf.to_container(config, resolve=True),
name=config.config_name,
mode="online",
entity=config.wandb_entity,
project=config.wandb_project,
dir=config.wandb_save_dir
)
self.output_path = config.logdir
# Step 2: Initialize the model and optimizer
if config.distribution_loss == "causvid":
self.model = CausVid(config, device=self.device)
elif config.distribution_loss == "dmd":
self.model = DMD(config, device=self.device)
elif config.distribution_loss == "sid":
self.model = SiD(config, device=self.device)
else:
raise ValueError("Invalid distribution matching loss")
# Save pretrained model state_dicts to CPU
self.fake_score_state_dict_cpu = self.model.fake_score.state_dict()
self.model.generator = fsdp_wrap(
self.model.generator,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.generator_fsdp_wrap_strategy
)
self.model.real_score = fsdp_wrap(
self.model.real_score,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.real_score_fsdp_wrap_strategy
)
self.model.fake_score = fsdp_wrap(
self.model.fake_score,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.fake_score_fsdp_wrap_strategy
)
self.model.text_encoder = fsdp_wrap(
self.model.text_encoder,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.text_encoder_fsdp_wrap_strategy,
cpu_offload=getattr(config, "text_encoder_cpu_offload", False)
)
if not config.no_visualize or config.load_raw_video:
self.model.vae = self.model.vae.to(
device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32)
self.generator_optimizer = torch.optim.AdamW(
[param for param in self.model.generator.parameters()
if param.requires_grad],
lr=config.lr,
betas=(config.beta1, config.beta2),
weight_decay=config.weight_decay
)
self.critic_optimizer = torch.optim.AdamW(
[param for param in self.model.fake_score.parameters()
if param.requires_grad],
lr=config.lr_critic if hasattr(config, "lr_critic") else config.lr,
betas=(config.beta1_critic, config.beta2_critic),
weight_decay=config.weight_decay
)
# Step 3: Initialize the dataloader
if self.config.i2v:
dataset = ShardingLMDBDataset(config.data_path, max_pair=int(1e8))
else:
dataset = TextDataset(config.data_path)
sampler = torch.utils.data.distributed.DistributedSampler(
dataset, shuffle=True, drop_last=True)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=config.batch_size,
sampler=sampler,
num_workers=8)
if dist.get_rank() == 0:
print("DATASET SIZE %d" % len(dataset))
self.dataloader = cycle(dataloader)
##############################################################################################################
# 6. Set up EMA parameter containers
rename_param = (
lambda name: name.replace("_fsdp_wrapped_module.", "")
.replace("_checkpoint_wrapped_module.", "")
.replace("_orig_mod.", "")
)
self.name_to_trainable_params = {}
for n, p in self.model.generator.named_parameters():
if not p.requires_grad:
continue
renamed_n = rename_param(n)
self.name_to_trainable_params[renamed_n] = p
ema_weight = config.ema_weight
self.generator_ema = None
if (ema_weight is not None) and (ema_weight > 0.0):
print(f"Setting up EMA with weight {ema_weight}")
self.generator_ema = EMA_FSDP(self.model.generator, decay=ema_weight)
##############################################################################################################
# 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts
if getattr(config, "generator_ckpt", False):
print(f"Loading pretrained generator from {config.generator_ckpt}")
state_dict = torch.load(config.generator_ckpt, map_location="cpu")
if "generator" in state_dict:
state_dict = state_dict["generator"]
elif "model" in state_dict:
state_dict = state_dict["model"]
self.model.generator.load_state_dict(
state_dict, strict=True
)
##############################################################################################################
# Let's delete EMA params for early steps to save some computes at training and inference
if self.step < config.ema_start_step:
self.generator_ema = None
self.max_grad_norm_generator = getattr(config, "max_grad_norm_generator", 10.0)
self.max_grad_norm_critic = getattr(config, "max_grad_norm_critic", 10.0)
self.previous_time = None
def save(self):
print("Start gathering distributed model states...")
generator_state_dict = fsdp_state_dict(
self.model.generator)
critic_state_dict = fsdp_state_dict(
self.model.fake_score)
if self.config.ema_start_step < self.step:
state_dict = {
"generator": generator_state_dict,
"critic": critic_state_dict,
"generator_ema": self.generator_ema.state_dict(),
}
else:
state_dict = {
"generator": generator_state_dict,
"critic": critic_state_dict,
}
if self.is_main_process:
os.makedirs(os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}"), exist_ok=True)
torch.save(state_dict, os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}", "model.pt"))
print("Model saved to", os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}", "model.pt"))
def fwdbwd_one_step(self, batch, train_generator):
self.model.eval() # prevent any randomness (e.g. dropout)
if self.step % 20 == 0:
torch.cuda.empty_cache()
# Step 1: Get the next batch of text prompts
text_prompts = batch["prompts"]
if self.config.i2v:
clean_latent = None
image_latent = batch["ode_latent"][:, -1][:, 0:1, ].to(
device=self.device, dtype=self.dtype)
else:
clean_latent = None
image_latent = None
batch_size = len(text_prompts)
image_or_video_shape = list(self.config.image_or_video_shape)
image_or_video_shape[0] = batch_size
# Step 2: Extract the conditional infos
with torch.no_grad():
conditional_dict = self.model.text_encoder(
text_prompts=text_prompts)
if not getattr(self, "unconditional_dict", None):
unconditional_dict = self.model.text_encoder(
text_prompts=[self.config.negative_prompt] * batch_size)
unconditional_dict = {k: v.detach()
for k, v in unconditional_dict.items()}
self.unconditional_dict = unconditional_dict # cache the unconditional_dict
else:
unconditional_dict = self.unconditional_dict
# Step 3: Store gradients for the generator (if training the generator)
if train_generator:
generator_loss, generator_log_dict = self.model.generator_loss(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
unconditional_dict=unconditional_dict,
clean_latent=clean_latent,
initial_latent=image_latent if self.config.i2v else None
)
generator_loss.backward()
generator_grad_norm = self.model.generator.clip_grad_norm_(
self.max_grad_norm_generator)
generator_log_dict.update({"generator_loss": generator_loss,
"generator_grad_norm": generator_grad_norm})
return generator_log_dict
else:
generator_log_dict = {}
# Step 4: Store gradients for the critic (if training the critic)
critic_loss, critic_log_dict = self.model.critic_loss(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
unconditional_dict=unconditional_dict,
clean_latent=clean_latent,
initial_latent=image_latent if self.config.i2v else None
)
critic_loss.backward()
critic_grad_norm = self.model.fake_score.clip_grad_norm_(
self.max_grad_norm_critic)
critic_log_dict.update({"critic_loss": critic_loss,
"critic_grad_norm": critic_grad_norm})
return critic_log_dict
def generate_video(self, pipeline, prompts, image=None):
batch_size = len(prompts)
if image is not None:
image = image.squeeze(0).unsqueeze(0).unsqueeze(2).to(device="cuda", dtype=torch.bfloat16)
# Encode the input image as the first latent
initial_latent = pipeline.vae.encode_to_latent(image).to(device="cuda", dtype=torch.bfloat16)
initial_latent = initial_latent.repeat(batch_size, 1, 1, 1, 1)
sampled_noise = torch.randn(
[batch_size, self.model.num_training_frames - 1, 16, 60, 104],
device="cuda",
dtype=self.dtype
)
else:
initial_latent = None
sampled_noise = torch.randn(
[batch_size, self.model.num_training_frames, 16, 60, 104],
device="cuda",
dtype=self.dtype
)
video, _ = pipeline.inference(
noise=sampled_noise,
text_prompts=prompts,
return_latents=True,
initial_latent=initial_latent
)
current_video = video.permute(0, 1, 3, 4, 2).cpu().numpy() * 255.0
return current_video
def train(self):
start_step = self.step
while True:
TRAIN_GENERATOR = self.step % self.config.dfake_gen_update_ratio == 0
# Train the generator
if TRAIN_GENERATOR:
self.generator_optimizer.zero_grad(set_to_none=True)
extras_list = []
batch = next(self.dataloader)
extra = self.fwdbwd_one_step(batch, True)
extras_list.append(extra)
generator_log_dict = merge_dict_list(extras_list)
self.generator_optimizer.step()
if self.generator_ema is not None:
self.generator_ema.update(self.model.generator)
# Train the critic
self.critic_optimizer.zero_grad(set_to_none=True)
extras_list = []
batch = next(self.dataloader)
extra = self.fwdbwd_one_step(batch, False)
extras_list.append(extra)
critic_log_dict = merge_dict_list(extras_list)
self.critic_optimizer.step()
# Increment the step since we finished gradient update
self.step += 1
# Create EMA params (if not already created)
if (self.step >= self.config.ema_start_step) and \
(self.generator_ema is None) and (self.config.ema_weight > 0):
self.generator_ema = EMA_FSDP(self.model.generator, decay=self.config.ema_weight)
# Save the model
if (not self.config.no_save) and (self.step - start_step) > 0 and self.step % self.config.log_iters == 0:
torch.cuda.empty_cache()
self.save()
torch.cuda.empty_cache()
# Logging
if self.is_main_process:
wandb_loss_dict = {}
if TRAIN_GENERATOR:
wandb_loss_dict.update(
{
"generator_loss": generator_log_dict["generator_loss"].mean().item(),
"generator_grad_norm": generator_log_dict["generator_grad_norm"].mean().item(),
"dmdtrain_gradient_norm": generator_log_dict["dmdtrain_gradient_norm"].mean().item()
}
)
wandb_loss_dict.update(
{
"critic_loss": critic_log_dict["critic_loss"].mean().item(),
"critic_grad_norm": critic_log_dict["critic_grad_norm"].mean().item()
}
)
if not self.disable_wandb:
wandb.log(wandb_loss_dict, step=self.step)
if self.step % self.config.gc_interval == 0:
if dist.get_rank() == 0:
logging.info("DistGarbageCollector: Running GC.")
gc.collect()
torch.cuda.empty_cache()
if self.is_main_process:
current_time = time.time()
if self.previous_time is None:
self.previous_time = current_time
else:
if not self.disable_wandb:
wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step)
self.previous_time = current_time
|