File size: 19,999 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import gc
import logging

from utils.dataset import ShardingLMDBDataset, cycle
from utils.distributed import EMA_FSDP, fsdp_wrap, fsdp_state_dict, launch_distributed_job
from utils.misc import (
    set_seed,
    merge_dict_list
)
import torch.distributed as dist
from omegaconf import OmegaConf
from model import GAN
import torch
import wandb
import time
import os


class Trainer:
    def __init__(self, config):
        self.config = config
        self.step = 0

        # Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.)
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

        launch_distributed_job()
        global_rank = dist.get_rank()
        self.world_size = dist.get_world_size()

        self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32
        self.device = torch.cuda.current_device()
        self.is_main_process = global_rank == 0
        self.causal = config.causal
        self.disable_wandb = config.disable_wandb

        # Configuration for discriminator warmup
        self.discriminator_warmup_steps = getattr(config, "discriminator_warmup_steps", 0)
        self.in_discriminator_warmup = self.step < self.discriminator_warmup_steps
        if self.in_discriminator_warmup and self.is_main_process:
            print(f"Starting with discriminator warmup for {self.discriminator_warmup_steps} steps")
        self.loss_scale = getattr(config, "loss_scale", 1.0)

        # use a random seed for the training
        if config.seed == 0:
            random_seed = torch.randint(0, 10000000, (1,), device=self.device)
            dist.broadcast(random_seed, src=0)
            config.seed = random_seed.item()

        set_seed(config.seed + global_rank)

        if self.is_main_process and not self.disable_wandb:
            wandb.login(host=config.wandb_host, key=config.wandb_key)
            wandb.init(
                config=OmegaConf.to_container(config, resolve=True),
                name=config.config_name,
                mode="online",
                entity=config.wandb_entity,
                project=config.wandb_project,
                dir=config.wandb_save_dir
            )

        self.output_path = config.logdir

        # Step 2: Initialize the model and optimizer
        self.model = GAN(config, device=self.device)

        self.model.generator = fsdp_wrap(
            self.model.generator,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.generator_fsdp_wrap_strategy
        )

        self.model.fake_score = fsdp_wrap(
            self.model.fake_score,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.fake_score_fsdp_wrap_strategy
        )

        self.model.text_encoder = fsdp_wrap(
            self.model.text_encoder,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.text_encoder_fsdp_wrap_strategy,
            cpu_offload=getattr(config, "text_encoder_cpu_offload", False)
        )

        if not config.no_visualize or config.load_raw_video:
            self.model.vae = self.model.vae.to(
                device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32)

        self.generator_optimizer = torch.optim.AdamW(
            [param for param in self.model.generator.parameters()
             if param.requires_grad],
            lr=config.gen_lr,
            betas=(config.beta1, config.beta2)
        )

        # Create separate parameter groups for the fake_score network
        # One group for parameters with "_cls_pred_branch" or "_gan_ca_blocks" in the name
        # and another group for all other parameters
        fake_score_params = []
        discriminator_params = []

        for name, param in self.model.fake_score.named_parameters():
            if param.requires_grad:
                if "_cls_pred_branch" in name or "_gan_ca_blocks" in name:
                    discriminator_params.append(param)
                else:
                    fake_score_params.append(param)

        # Use the special learning rate for the special parameter group
        # and the default critic learning rate for other parameters
        self.critic_param_groups = [
            {'params': fake_score_params, 'lr': config.critic_lr},
            {'params': discriminator_params, 'lr': config.critic_lr * config.discriminator_lr_multiplier}
        ]
        if self.in_discriminator_warmup:
            self.critic_optimizer = torch.optim.AdamW(
                self.critic_param_groups,
                betas=(0.9, config.beta2_critic)
            )
        else:
            self.critic_optimizer = torch.optim.AdamW(
                self.critic_param_groups,
                betas=(config.beta1_critic, config.beta2_critic)
            )

        # Step 3: Initialize the dataloader
        self.data_path = config.data_path
        dataset = ShardingLMDBDataset(config.data_path, max_pair=int(1e8))
        sampler = torch.utils.data.distributed.DistributedSampler(
            dataset, shuffle=True, drop_last=True)
        dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=config.batch_size,
            sampler=sampler,
            num_workers=8)

        if dist.get_rank() == 0:
            print("DATASET SIZE %d" % len(dataset))

        self.dataloader = cycle(dataloader)

        ##############################################################################################################
        # 6. Set up EMA parameter containers
        rename_param = (
            lambda name: name.replace("_fsdp_wrapped_module.", "")
            .replace("_checkpoint_wrapped_module.", "")
            .replace("_orig_mod.", "")
        )
        self.name_to_trainable_params = {}
        for n, p in self.model.generator.named_parameters():
            if not p.requires_grad:
                continue

            renamed_n = rename_param(n)
            self.name_to_trainable_params[renamed_n] = p
        ema_weight = config.ema_weight
        self.generator_ema = None
        if (ema_weight is not None) and (ema_weight > 0.0):
            print(f"Setting up EMA with weight {ema_weight}")
            self.generator_ema = EMA_FSDP(self.model.generator, decay=ema_weight)

        ##############################################################################################################
        # 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts
        if getattr(config, "generator_ckpt", False):
            print(f"Loading pretrained generator from {config.generator_ckpt}")
            state_dict = torch.load(config.generator_ckpt, map_location="cpu")
            if "generator" in state_dict:
                state_dict = state_dict["generator"]
            elif "model" in state_dict:
                state_dict = state_dict["model"]
            self.model.generator.load_state_dict(
                state_dict, strict=True
            )
        if hasattr(config, "load"):
            resume_ckpt_path_critic = os.path.join(config.load, "critic")
            resume_ckpt_path_generator = os.path.join(config.load, "generator")
        else:
            resume_ckpt_path_critic = "none"
            resume_ckpt_path_generator = "none"

        _, _ = self.checkpointer_critic.try_best_load(
            resume_ckpt_path=resume_ckpt_path_critic,
        )
        self.step, _ = self.checkpointer_generator.try_best_load(
            resume_ckpt_path=resume_ckpt_path_generator,
            force_start_w_ema=config.force_start_w_ema,
            force_reset_zero_step=config.force_reset_zero_step,
            force_reinit_ema=config.force_reinit_ema,
            skip_optimizer_scheduler=config.skip_optimizer_scheduler,
        )

        ##############################################################################################################

        # Let's delete EMA params for early steps to save some computes at training and inference
        if self.step < config.ema_start_step:
            self.generator_ema = None

        self.max_grad_norm_generator = getattr(config, "max_grad_norm_generator", 10.0)
        self.max_grad_norm_critic = getattr(config, "max_grad_norm_critic", 10.0)
        self.previous_time = None

    def save(self):
        print("Start gathering distributed model states...")
        generator_state_dict = fsdp_state_dict(
            self.model.generator)
        critic_state_dict = fsdp_state_dict(
            self.model.fake_score)

        if self.config.ema_start_step < self.step:
            state_dict = {
                "generator": generator_state_dict,
                "critic": critic_state_dict,
                "generator_ema": self.generator_ema.state_dict(),
            }
        else:
            state_dict = {
                "generator": generator_state_dict,
                "critic": critic_state_dict,
            }

        if self.is_main_process:
            os.makedirs(os.path.join(self.output_path,
                        f"checkpoint_model_{self.step:06d}"), exist_ok=True)
            torch.save(state_dict, os.path.join(self.output_path,
                       f"checkpoint_model_{self.step:06d}", "model.pt"))
            print("Model saved to", os.path.join(self.output_path,
                  f"checkpoint_model_{self.step:06d}", "model.pt"))

    def fwdbwd_one_step(self, batch, train_generator):
        self.model.eval()  # prevent any randomness (e.g. dropout)

        if self.step % 20 == 0:
            torch.cuda.empty_cache()

        # Step 1: Get the next batch of text prompts
        text_prompts = batch["prompts"]  # next(self.dataloader)
        if "ode_latent" in batch:
            clean_latent = batch["ode_latent"][:, -1].to(device=self.device, dtype=self.dtype)
        else:
            frames = batch["frames"].to(device=self.device, dtype=self.dtype)
            with torch.no_grad():
                clean_latent = self.model.vae.encode_to_latent(
                    frames).to(device=self.device, dtype=self.dtype)

            image_latent = clean_latent[:, 0:1, ]

        batch_size = len(text_prompts)
        image_or_video_shape = list(self.config.image_or_video_shape)
        image_or_video_shape[0] = batch_size

        # Step 2: Extract the conditional infos
        with torch.no_grad():
            conditional_dict = self.model.text_encoder(
                text_prompts=text_prompts)

            if not getattr(self, "unconditional_dict", None):
                unconditional_dict = self.model.text_encoder(
                    text_prompts=[self.config.negative_prompt] * batch_size)
                unconditional_dict = {k: v.detach()
                                      for k, v in unconditional_dict.items()}
                self.unconditional_dict = unconditional_dict  # cache the unconditional_dict
            else:
                unconditional_dict = self.unconditional_dict

        mini_bs, full_bs = (
            batch["mini_bs"],
            batch["full_bs"],
        )

        # Step 3: Store gradients for the generator (if training the generator)
        if train_generator:
            gan_G_loss = self.model.generator_loss(
                image_or_video_shape=image_or_video_shape,
                conditional_dict=conditional_dict,
                unconditional_dict=unconditional_dict,
                clean_latent=clean_latent,
                initial_latent=image_latent if self.config.i2v else None
            )

            loss_ratio = mini_bs * self.world_size / full_bs
            total_loss = gan_G_loss * loss_ratio * self.loss_scale

            total_loss.backward()
            generator_grad_norm = self.model.generator.clip_grad_norm_(
                self.max_grad_norm_generator)

            generator_log_dict = {"generator_grad_norm": generator_grad_norm,
                                  "gan_G_loss": gan_G_loss}

            return generator_log_dict
        else:
            generator_log_dict = {}

        # Step 4: Store gradients for the critic (if training the critic)
        (gan_D_loss, r1_loss, r2_loss), critic_log_dict = self.model.critic_loss(
            image_or_video_shape=image_or_video_shape,
            conditional_dict=conditional_dict,
            unconditional_dict=unconditional_dict,
            clean_latent=clean_latent,
            real_image_or_video=clean_latent,
            initial_latent=image_latent if self.config.i2v else None
        )

        loss_ratio = mini_bs * dist.get_world_size() / full_bs
        total_loss = (gan_D_loss + 0.5 * (r1_loss + r2_loss)) * loss_ratio * self.loss_scale

        total_loss.backward()
        critic_grad_norm = self.model.fake_score.clip_grad_norm_(
            self.max_grad_norm_critic)

        critic_log_dict.update({"critic_grad_norm": critic_grad_norm,
                                "gan_D_loss": gan_D_loss,
                                "r1_loss": r1_loss,
                                "r2_loss": r2_loss})

        return critic_log_dict

    def generate_video(self, pipeline, prompts, image=None):
        batch_size = len(prompts)
        sampled_noise = torch.randn(
            [batch_size, 21, 16, 60, 104], device="cuda", dtype=self.dtype
        )
        video, _ = pipeline.inference(
            noise=sampled_noise,
            text_prompts=prompts,
            return_latents=True
        )
        current_video = video.permute(0, 1, 3, 4, 2).cpu().numpy() * 255.0
        return current_video

    def train(self):
        start_step = self.step

        while True:
            if self.step == self.discriminator_warmup_steps and self.discriminator_warmup_steps != 0:
                print("Resetting critic optimizer")
                del self.critic_optimizer
                torch.cuda.empty_cache()
                # Create new optimizers
                self.critic_optimizer = torch.optim.AdamW(
                    self.critic_param_groups,
                    betas=(self.config.beta1_critic, self.config.beta2_critic)
                )
                # Update checkpointer references
                self.checkpointer_critic.optimizer = self.critic_optimizer
            # Check if we're in the discriminator warmup phase
            self.in_discriminator_warmup = self.step < self.discriminator_warmup_steps

            # Only update generator and critic outside the warmup phase
            TRAIN_GENERATOR = not self.in_discriminator_warmup and self.step % self.config.dfake_gen_update_ratio == 0

            # Train the generator (only outside warmup phase)
            if TRAIN_GENERATOR:
                self.model.fake_score.requires_grad_(False)
                self.model.generator.requires_grad_(True)
                self.generator_optimizer.zero_grad(set_to_none=True)
                extras_list = []
                for ii, mini_batch in enumerate(self.dataloader.next()):
                    extra = self.fwdbwd_one_step(mini_batch, True)
                    extras_list.append(extra)
                generator_log_dict = merge_dict_list(extras_list)
                self.generator_optimizer.step()
                if self.generator_ema is not None:
                    self.generator_ema.update(self.model.generator)
            else:
                generator_log_dict = {}

            # Train the critic/discriminator
            if self.in_discriminator_warmup:
                # During warmup, only allow gradient for discriminator params
                self.model.generator.requires_grad_(False)
                self.model.fake_score.requires_grad_(False)

                # Enable gradient only for discriminator params
                for name, param in self.model.fake_score.named_parameters():
                    if "_cls_pred_branch" in name or "_gan_ca_blocks" in name:
                        param.requires_grad_(True)
            else:
                # Normal training mode
                self.model.generator.requires_grad_(False)
                self.model.fake_score.requires_grad_(True)

            self.critic_optimizer.zero_grad(set_to_none=True)
            extras_list = []
            batch = next(self.dataloader)
            extra = self.fwdbwd_one_step(batch, False)
            extras_list.append(extra)
            critic_log_dict = merge_dict_list(extras_list)
            self.critic_optimizer.step()

            # Increment the step since we finished gradient update
            self.step += 1

            # If we just finished warmup, print a message
            if self.is_main_process and self.step == self.discriminator_warmup_steps:
                print(f"Finished discriminator warmup after {self.discriminator_warmup_steps} steps")

            # Create EMA params (if not already created)
            if (self.step >= self.config.ema_start_step) and \
                    (self.generator_ema is None) and (self.config.ema_weight > 0):
                self.generator_ema = EMA_FSDP(self.model.generator, decay=self.config.ema_weight)

            # Save the model
            if (not self.config.no_save) and (self.step - start_step) > 0 and self.step % self.config.log_iters == 0:
                torch.cuda.empty_cache()
                self.save()
                torch.cuda.empty_cache()

            # Logging
            wandb_loss_dict = {
                "generator_grad_norm": generator_log_dict["generator_grad_norm"],
                "critic_grad_norm": critic_log_dict["critic_grad_norm"],
                "real_logit": critic_log_dict["noisy_real_logit"],
                "fake_logit": critic_log_dict["noisy_fake_logit"],
                "r1_loss": critic_log_dict["r1_loss"],
                "r2_loss": critic_log_dict["r2_loss"],
            }
            if TRAIN_GENERATOR:
                wandb_loss_dict.update({
                    "generator_grad_norm": generator_log_dict["generator_grad_norm"],
                })
            self.all_gather_dict(wandb_loss_dict)
            wandb_loss_dict["diff_logit"] = wandb_loss_dict["real_logit"] - wandb_loss_dict["fake_logit"]
            wandb_loss_dict["reg_loss"] = 0.5 * (wandb_loss_dict["r1_loss"] + wandb_loss_dict["r2_loss"])

            if self.is_main_process:
                if self.in_discriminator_warmup:
                    warmup_status = f"[WARMUP {self.step}/{self.discriminator_warmup_steps}] Training only discriminator params"
                    print(warmup_status)
                    if not self.disable_wandb:
                        wandb_loss_dict.update({"warmup_status": 1.0})

                if not self.disable_wandb:
                    wandb.log(wandb_loss_dict, step=self.step)

            if self.step % self.config.gc_interval == 0:
                if dist.get_rank() == 0:
                    logging.info("DistGarbageCollector: Running GC.")
                gc.collect()
                torch.cuda.empty_cache()

            if self.is_main_process:
                current_time = time.time()
                if self.previous_time is None:
                    self.previous_time = current_time
                else:
                    if not self.disable_wandb:
                        wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step)
                    self.previous_time = current_time

    def all_gather_dict(self, target_dict):
        for key, value in target_dict.items():
            gathered_value = torch.zeros(
                [self.world_size, *value.shape],
                dtype=value.dtype, device=self.device)
            dist.all_gather_into_tensor(gathered_value, value)
            avg_value = gathered_value.mean().item()
            target_dict[key] = avg_value