File size: 9,791 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gc
import logging
from utils.dataset import ODERegressionLMDBDataset, cycle
from model import ODERegression
from collections import defaultdict
from utils.misc import (
    set_seed
)
import torch.distributed as dist
from omegaconf import OmegaConf
import torch
import wandb
import time
import os

from utils.distributed import barrier, fsdp_wrap, fsdp_state_dict, launch_distributed_job


class Trainer:
    def __init__(self, config):
        self.config = config
        self.step = 0

        # Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.)
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

        launch_distributed_job()
        global_rank = dist.get_rank()
        self.world_size = dist.get_world_size()

        self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32
        self.device = torch.cuda.current_device()
        self.is_main_process = global_rank == 0
        self.disable_wandb = config.disable_wandb

        # use a random seed for the training
        if config.seed == 0:
            random_seed = torch.randint(0, 10000000, (1,), device=self.device)
            dist.broadcast(random_seed, src=0)
            config.seed = random_seed.item()

        set_seed(config.seed + global_rank)

        if self.is_main_process and not self.disable_wandb:
            wandb.login(host=config.wandb_host, key=config.wandb_key)
            wandb.init(
                config=OmegaConf.to_container(config, resolve=True),
                name=config.config_name,
                mode="online",
                entity=config.wandb_entity,
                project=config.wandb_project,
                dir=config.wandb_save_dir
            )

        self.output_path = config.logdir

        # Step 2: Initialize the model and optimizer

        assert config.distribution_loss == "ode", "Only ODE loss is supported for ODE training"
        self.model = ODERegression(config, device=self.device)

        self.model.generator = fsdp_wrap(
            self.model.generator,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.generator_fsdp_wrap_strategy
        )
        self.model.text_encoder = fsdp_wrap(
            self.model.text_encoder,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.text_encoder_fsdp_wrap_strategy,
            cpu_offload=getattr(config, "text_encoder_cpu_offload", False)
        )

        if not config.no_visualize or config.load_raw_video:
            self.model.vae = self.model.vae.to(
                device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32)

        self.generator_optimizer = torch.optim.AdamW(
            [param for param in self.model.generator.parameters()
             if param.requires_grad],
            lr=config.lr,
            betas=(config.beta1, config.beta2),
            weight_decay=config.weight_decay
        )

        # Step 3: Initialize the dataloader
        dataset = ODERegressionLMDBDataset(
            config.data_path, max_pair=getattr(config, "max_pair", int(1e8)))
        sampler = torch.utils.data.distributed.DistributedSampler(
            dataset, shuffle=True, drop_last=True)
        dataloader = torch.utils.data.DataLoader(
            dataset, batch_size=config.batch_size, sampler=sampler, num_workers=8)
        total_batch_size = getattr(config, "total_batch_size", None)
        if total_batch_size is not None:
            assert total_batch_size == config.batch_size * self.world_size, "Gradient accumulation is not supported for ODE training"
        self.dataloader = cycle(dataloader)

        self.step = 0

        ##############################################################################################################
        # 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts
        if getattr(config, "generator_ckpt", False):
            print(f"Loading pretrained generator from {config.generator_ckpt}")
            state_dict = torch.load(config.generator_ckpt, map_location="cpu")[
                'generator']
            self.model.generator.load_state_dict(
                state_dict, strict=True
            )

        ##############################################################################################################

        self.max_grad_norm = 10.0
        self.previous_time = None

    def save(self):
        print("Start gathering distributed model states...")
        generator_state_dict = fsdp_state_dict(
            self.model.generator)
        state_dict = {
            "generator": generator_state_dict
        }

        if self.is_main_process:
            os.makedirs(os.path.join(self.output_path,
                        f"checkpoint_model_{self.step:06d}"), exist_ok=True)
            torch.save(state_dict, os.path.join(self.output_path,
                       f"checkpoint_model_{self.step:06d}", "model.pt"))
            print("Model saved to", os.path.join(self.output_path,
                  f"checkpoint_model_{self.step:06d}", "model.pt"))

    def train_one_step(self):
        VISUALIZE = self.step % 100 == 0
        self.model.eval()  # prevent any randomness (e.g. dropout)

        # Step 1: Get the next batch of text prompts
        batch = next(self.dataloader)
        text_prompts = batch["prompts"]
        ode_latent = batch["ode_latent"].to(
            device=self.device, dtype=self.dtype)

        # Step 2: Extract the conditional infos
        with torch.no_grad():
            conditional_dict = self.model.text_encoder(
                text_prompts=text_prompts)

        # Step 3: Train the generator
        generator_loss, log_dict = self.model.generator_loss(
            ode_latent=ode_latent,
            conditional_dict=conditional_dict
        )

        unnormalized_loss = log_dict["unnormalized_loss"]
        timestep = log_dict["timestep"]

        if self.world_size > 1:
            gathered_unnormalized_loss = torch.zeros(
                [self.world_size, *unnormalized_loss.shape],
                dtype=unnormalized_loss.dtype, device=self.device)
            gathered_timestep = torch.zeros(
                [self.world_size, *timestep.shape],
                dtype=timestep.dtype, device=self.device)

            dist.all_gather_into_tensor(
                gathered_unnormalized_loss, unnormalized_loss)
            dist.all_gather_into_tensor(gathered_timestep, timestep)
        else:
            gathered_unnormalized_loss = unnormalized_loss
            gathered_timestep = timestep

        loss_breakdown = defaultdict(list)
        stats = {}

        for index, t in enumerate(timestep):
            loss_breakdown[str(int(t.item()) // 250 * 250)].append(
                unnormalized_loss[index].item())

        for key_t in loss_breakdown.keys():
            stats["loss_at_time_" + key_t] = sum(loss_breakdown[key_t]) / \
                len(loss_breakdown[key_t])

        self.generator_optimizer.zero_grad()
        generator_loss.backward()
        generator_grad_norm = self.model.generator.clip_grad_norm_(
            self.max_grad_norm)
        self.generator_optimizer.step()

        # Step 4: Visualization
        if VISUALIZE and not self.config.no_visualize and not self.config.disable_wandb and self.is_main_process:
            # Visualize the input, output, and ground truth
            input = log_dict["input"]
            output = log_dict["output"]
            ground_truth = ode_latent[:, -1]

            input_video = self.model.vae.decode_to_pixel(input)
            output_video = self.model.vae.decode_to_pixel(output)
            ground_truth_video = self.model.vae.decode_to_pixel(ground_truth)
            input_video = 255.0 * (input_video.cpu().numpy() * 0.5 + 0.5)
            output_video = 255.0 * (output_video.cpu().numpy() * 0.5 + 0.5)
            ground_truth_video = 255.0 * (ground_truth_video.cpu().numpy() * 0.5 + 0.5)

            # Visualize the input, output, and ground truth
            wandb.log({
                "input": wandb.Video(input_video, caption="Input", fps=16, format="mp4"),
                "output": wandb.Video(output_video, caption="Output", fps=16, format="mp4"),
                "ground_truth": wandb.Video(ground_truth_video, caption="Ground Truth", fps=16, format="mp4"),
            }, step=self.step)

        # Step 5: Logging
        if self.is_main_process and not self.disable_wandb:
            wandb_loss_dict = {
                "generator_loss": generator_loss.item(),
                "generator_grad_norm": generator_grad_norm.item(),
                **stats
            }
            wandb.log(wandb_loss_dict, step=self.step)

        if self.step % self.config.gc_interval == 0:
            if dist.get_rank() == 0:
                logging.info("DistGarbageCollector: Running GC.")
            gc.collect()

    def train(self):
        while True:
            self.train_one_step()
            if (not self.config.no_save) and self.step % self.config.log_iters == 0:
                self.save()
                torch.cuda.empty_cache()

            barrier()
            if self.is_main_process:
                current_time = time.time()
                if self.previous_time is None:
                    self.previous_time = current_time
                else:
                    if not self.disable_wandb:
                        wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step)
                    self.previous_time = current_time

            self.step += 1