File size: 4,571 Bytes
0fd2f06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from datetime import timedelta
from functools import partial
import os
import torch
import torch.distributed as dist
from torch.distributed.fsdp import FullStateDictConfig, FullyShardedDataParallel as FSDP, MixedPrecision, ShardingStrategy, StateDictType
from torch.distributed.fsdp.api import CPUOffload
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy


def fsdp_state_dict(model):
    fsdp_fullstate_save_policy = FullStateDictConfig(
        offload_to_cpu=True, rank0_only=True
    )
    with FSDP.state_dict_type(
        model, StateDictType.FULL_STATE_DICT, fsdp_fullstate_save_policy
    ):
        checkpoint = model.state_dict()

    return checkpoint


def fsdp_wrap(module, sharding_strategy="full", mixed_precision=False, wrap_strategy="size", min_num_params=int(5e7), transformer_module=None, cpu_offload=False):
    if mixed_precision:
        mixed_precision_policy = MixedPrecision(
            param_dtype=torch.bfloat16,
            reduce_dtype=torch.float32,
            buffer_dtype=torch.float32,
            cast_forward_inputs=False
        )
    else:
        mixed_precision_policy = None

    if wrap_strategy == "transformer":
        auto_wrap_policy = partial(
            transformer_auto_wrap_policy,
            transformer_layer_cls=transformer_module
        )
    elif wrap_strategy == "size":
        auto_wrap_policy = partial(
            size_based_auto_wrap_policy,
            min_num_params=min_num_params
        )
    else:
        raise ValueError(f"Invalid wrap strategy: {wrap_strategy}")

    os.environ["NCCL_CROSS_NIC"] = "1"

    sharding_strategy = {
        "full": ShardingStrategy.FULL_SHARD,
        "hybrid_full": ShardingStrategy.HYBRID_SHARD,
        "hybrid_zero2": ShardingStrategy._HYBRID_SHARD_ZERO2,
        "no_shard": ShardingStrategy.NO_SHARD,
    }[sharding_strategy]

    module = FSDP(
        module,
        auto_wrap_policy=auto_wrap_policy,
        sharding_strategy=sharding_strategy,
        mixed_precision=mixed_precision_policy,
        device_id=torch.cuda.current_device(),
        limit_all_gathers=True,
        use_orig_params=True,
        cpu_offload=CPUOffload(offload_params=cpu_offload),
        sync_module_states=False  # Load ckpt on rank 0 and sync to other ranks
    )
    return module


def barrier():
    if dist.is_initialized():
        dist.barrier()


def launch_distributed_job(backend: str = "nccl"):
    rank = int(os.environ["RANK"])
    local_rank = int(os.environ["LOCAL_RANK"])
    world_size = int(os.environ["WORLD_SIZE"])
    host = os.environ["MASTER_ADDR"]
    port = int(os.environ["MASTER_PORT"])

    if ":" in host:  # IPv6
        init_method = f"tcp://[{host}]:{port}"
    else:  # IPv4
        init_method = f"tcp://{host}:{port}"
    dist.init_process_group(rank=rank, world_size=world_size, backend=backend,
                            init_method=init_method, timeout=timedelta(minutes=30))
    torch.cuda.set_device(local_rank)


class EMA_FSDP:
    def __init__(self, fsdp_module: torch.nn.Module, decay: float = 0.999):
        self.decay = decay
        self.shadow = {}
        self._init_shadow(fsdp_module)

    @torch.no_grad()
    def _init_shadow(self, fsdp_module):
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        with FSDP.summon_full_params(fsdp_module, writeback=False):
            for n, p in fsdp_module.module.named_parameters():
                self.shadow[n] = p.detach().clone().float().cpu()

    @torch.no_grad()
    def update(self, fsdp_module):
        d = self.decay
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        with FSDP.summon_full_params(fsdp_module, writeback=False):
            for n, p in fsdp_module.module.named_parameters():
                self.shadow[n].mul_(d).add_(p.detach().float().cpu(), alpha=1. - d)

    # Optional helpers ---------------------------------------------------
    def state_dict(self):
        return self.shadow            # picklable

    def load_state_dict(self, sd):
        self.shadow = {k: v.clone() for k, v in sd.items()}

    def copy_to(self, fsdp_module):
        # load EMA weights into an (unwrapped) copy of the generator
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        with FSDP.summon_full_params(fsdp_module, writeback=True):
            for n, p in fsdp_module.module.named_parameters():
                if n in self.shadow:
                    p.data.copy_(self.shadow[n].to(p.dtype, device=p.device))