self-forcing / inference.py
multimodalart's picture
Upload 80 files
0fd2f06 verified
raw
history blame
6.99 kB
import argparse
import torch
import os
from omegaconf import OmegaConf
from tqdm import tqdm
from torchvision import transforms
from torchvision.io import write_video
from einops import rearrange
import torch.distributed as dist
from torch.utils.data import DataLoader, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pipeline import (
CausalDiffusionInferencePipeline,
CausalInferencePipeline
)
from utils.dataset import TextDataset, TextImagePairDataset
from utils.misc import set_seed
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", type=str, help="Path to the config file")
parser.add_argument("--checkpoint_path", type=str, help="Path to the checkpoint folder")
parser.add_argument("--data_path", type=str, help="Path to the dataset")
parser.add_argument("--extended_prompt_path", type=str, help="Path to the extended prompt")
parser.add_argument("--output_folder", type=str, help="Output folder")
parser.add_argument("--num_output_frames", type=int, default=21,
help="Number of overlap frames between sliding windows")
parser.add_argument("--i2v", action="store_true", help="Whether to perform I2V (or T2V by default)")
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA parameters")
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument("--num_samples", type=int, default=1, help="Number of samples to generate per prompt")
parser.add_argument("--save_with_index", action="store_true",
help="Whether to save the video using the index or prompt as the filename")
args = parser.parse_args()
# Initialize distributed inference
if "LOCAL_RANK" in os.environ:
dist.init_process_group(backend='nccl')
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device(f"cuda:{local_rank}")
world_size = dist.get_world_size()
set_seed(args.seed + local_rank)
else:
device = torch.device("cuda")
local_rank = 0
world_size = 1
set_seed(args.seed)
torch.set_grad_enabled(False)
config = OmegaConf.load(args.config_path)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)
# Initialize pipeline
if hasattr(config, 'denoising_step_list'):
# Few-step inference
pipeline = CausalInferencePipeline(config, device=device)
else:
# Multi-step diffusion inference
pipeline = CausalDiffusionInferencePipeline(config, device=device)
if args.checkpoint_path:
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
pipeline.generator.load_state_dict(state_dict['generator' if not args.use_ema else 'generator_ema'])
pipeline = pipeline.to(device=device, dtype=torch.bfloat16)
# Create dataset
if args.i2v:
assert not dist.is_initialized(), "I2V does not support distributed inference yet"
transform = transforms.Compose([
transforms.Resize((480, 832)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
dataset = TextImagePairDataset(args.data_path, transform=transform)
else:
dataset = TextDataset(prompt_path=args.data_path, extended_prompt_path=args.extended_prompt_path)
num_prompts = len(dataset)
print(f"Number of prompts: {num_prompts}")
if dist.is_initialized():
sampler = DistributedSampler(dataset, shuffle=False, drop_last=True)
else:
sampler = SequentialSampler(dataset)
dataloader = DataLoader(dataset, batch_size=1, sampler=sampler, num_workers=0, drop_last=False)
# Create output directory (only on main process to avoid race conditions)
if local_rank == 0:
os.makedirs(args.output_folder, exist_ok=True)
if dist.is_initialized():
dist.barrier()
def encode(self, videos: torch.Tensor) -> torch.Tensor:
device, dtype = videos[0].device, videos[0].dtype
scale = [self.mean.to(device=device, dtype=dtype),
1.0 / self.std.to(device=device, dtype=dtype)]
output = [
self.model.encode(u.unsqueeze(0), scale).float().squeeze(0)
for u in videos
]
output = torch.stack(output, dim=0)
return output
for i, batch_data in tqdm(enumerate(dataloader), disable=(local_rank != 0)):
idx = batch_data['idx'].item()
# For DataLoader batch_size=1, the batch_data is already a single item, but in a batch container
# Unpack the batch data for convenience
if isinstance(batch_data, dict):
batch = batch_data
elif isinstance(batch_data, list):
batch = batch_data[0] # First (and only) item in the batch
all_video = []
num_generated_frames = 0 # Number of generated (latent) frames
if args.i2v:
# For image-to-video, batch contains image and caption
prompt = batch['prompts'][0] # Get caption from batch
prompts = [prompt] * args.num_samples
# Process the image
image = batch['image'].squeeze(0).unsqueeze(0).unsqueeze(2).to(device=device, dtype=torch.bfloat16)
# Encode the input image as the first latent
initial_latent = pipeline.vae.encode_to_latent(image).to(device=device, dtype=torch.bfloat16)
initial_latent = initial_latent.repeat(args.num_samples, 1, 1, 1, 1)
sampled_noise = torch.randn(
[args.num_samples, args.num_output_frames - 1, 16, 60, 104], device=device, dtype=torch.bfloat16
)
else:
# For text-to-video, batch is just the text prompt
prompt = batch['prompts'][0]
extended_prompt = batch['extended_prompts'][0] if 'extended_prompts' in batch else None
if extended_prompt is not None:
prompts = [extended_prompt] * args.num_samples
else:
prompts = [prompt] * args.num_samples
initial_latent = None
sampled_noise = torch.randn(
[args.num_samples, args.num_output_frames, 16, 60, 104], device=device, dtype=torch.bfloat16
)
# Generate 81 frames
video, latents = pipeline.inference(
noise=sampled_noise,
text_prompts=prompts,
return_latents=True,
initial_latent=initial_latent,
)
current_video = rearrange(video, 'b t c h w -> b t h w c').cpu()
all_video.append(current_video)
num_generated_frames += latents.shape[1]
# Final output video
video = 255.0 * torch.cat(all_video, dim=1)
# Clear VAE cache
pipeline.vae.model.clear_cache()
# Save the video if the current prompt is not a dummy prompt
if idx < num_prompts:
model = "regular" if not args.use_ema else "ema"
for seed_idx in range(args.num_samples):
# All processes save their videos
if args.save_with_index:
output_path = os.path.join(args.output_folder, f'{idx}-{seed_idx}_{model}.mp4')
else:
output_path = os.path.join(args.output_folder, f'{prompt[:100]}-{seed_idx}.mp4')
write_video(output_path, video[seed_idx], fps=16)