multimodalart's picture
Upload 80 files
0fd2f06 verified
raw
history blame
14.2 kB
#!/usr/bin/env python3
"""
Tiny AutoEncoder for Hunyuan Video
(DNN for encoding / decoding videos to Hunyuan Video's latent space)
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm.auto import tqdm
from collections import namedtuple
DecoderResult = namedtuple("DecoderResult", ("frame", "memory"))
TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index"))
def conv(n_in, n_out, **kwargs):
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
def forward(self, x):
return torch.tanh(x / 3) * 3
class MemBlock(nn.Module):
def __init__(self, n_in, n_out):
super().__init__()
self.conv = nn.Sequential(conv(n_in * 2, n_out), nn.ReLU(inplace=True),
conv(n_out, n_out), nn.ReLU(inplace=True), conv(n_out, n_out))
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.act = nn.ReLU(inplace=True)
def forward(self, x, past):
return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x))
class TPool(nn.Module):
def __init__(self, n_f, stride):
super().__init__()
self.stride = stride
self.conv = nn.Conv2d(n_f * stride, n_f, 1, bias=False)
def forward(self, x):
_NT, C, H, W = x.shape
return self.conv(x.reshape(-1, self.stride * C, H, W))
class TGrow(nn.Module):
def __init__(self, n_f, stride):
super().__init__()
self.stride = stride
self.conv = nn.Conv2d(n_f, n_f * stride, 1, bias=False)
def forward(self, x):
_NT, C, H, W = x.shape
x = self.conv(x)
return x.reshape(-1, C, H, W)
def apply_model_with_memblocks(model, x, parallel, show_progress_bar):
"""
Apply a sequential model with memblocks to the given input.
Args:
- model: nn.Sequential of blocks to apply
- x: input data, of dimensions NTCHW
- parallel: if True, parallelize over timesteps (fast but uses O(T) memory)
if False, each timestep will be processed sequentially (slow but uses O(1) memory)
- show_progress_bar: if True, enables tqdm progressbar display
Returns NTCHW tensor of output data.
"""
assert x.ndim == 5, f"TAEHV operates on NTCHW tensors, but got {x.ndim}-dim tensor"
N, T, C, H, W = x.shape
if parallel:
x = x.reshape(N * T, C, H, W)
# parallel over input timesteps, iterate over blocks
for b in tqdm(model, disable=not show_progress_bar):
if isinstance(b, MemBlock):
NT, C, H, W = x.shape
T = NT // N
_x = x.reshape(N, T, C, H, W)
mem = F.pad(_x, (0, 0, 0, 0, 0, 0, 1, 0), value=0)[:, :T].reshape(x.shape)
x = b(x, mem)
else:
x = b(x)
NT, C, H, W = x.shape
T = NT // N
x = x.view(N, T, C, H, W)
else:
# TODO(oboerbohan): at least on macos this still gradually uses more memory during decode...
# need to fix :(
out = []
# iterate over input timesteps and also iterate over blocks.
# because of the cursed TPool/TGrow blocks, this is not a nested loop,
# it's actually a ***graph traversal*** problem! so let's make a queue
work_queue = [TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(N, T * C, H, W).chunk(T, dim=1))]
# in addition to manually managing our queue, we also need to manually manage our progressbar.
# we'll update it for every source node that we consume.
progress_bar = tqdm(range(T), disable=not show_progress_bar)
# we'll also need a separate addressable memory per node as well
mem = [None] * len(model)
while work_queue:
xt, i = work_queue.pop(0)
if i == 0:
# new source node consumed
progress_bar.update(1)
if i == len(model):
# reached end of the graph, append result to output list
out.append(xt)
else:
# fetch the block to process
b = model[i]
if isinstance(b, MemBlock):
# mem blocks are simple since we're visiting the graph in causal order
if mem[i] is None:
xt_new = b(xt, xt * 0)
mem[i] = xt
else:
xt_new = b(xt, mem[i])
mem[i].copy_(xt) # inplace might reduce mysterious pytorch memory allocations? doesn't help though
# add successor to work queue
work_queue.insert(0, TWorkItem(xt_new, i + 1))
elif isinstance(b, TPool):
# pool blocks are miserable
if mem[i] is None:
mem[i] = [] # pool memory is itself a queue of inputs to pool
mem[i].append(xt)
if len(mem[i]) > b.stride:
# pool mem is in invalid state, we should have pooled before this
raise ValueError("???")
elif len(mem[i]) < b.stride:
# pool mem is not yet full, go back to processing the work queue
pass
else:
# pool mem is ready, run the pool block
N, C, H, W = xt.shape
xt = b(torch.cat(mem[i], 1).view(N * b.stride, C, H, W))
# reset the pool mem
mem[i] = []
# add successor to work queue
work_queue.insert(0, TWorkItem(xt, i + 1))
elif isinstance(b, TGrow):
xt = b(xt)
NT, C, H, W = xt.shape
# each tgrow has multiple successor nodes
for xt_next in reversed(xt.view(N, b.stride * C, H, W).chunk(b.stride, 1)):
# add successor to work queue
work_queue.insert(0, TWorkItem(xt_next, i + 1))
else:
# normal block with no funny business
xt = b(xt)
# add successor to work queue
work_queue.insert(0, TWorkItem(xt, i + 1))
progress_bar.close()
x = torch.stack(out, 1)
return x
class TAEHV(nn.Module):
latent_channels = 16
image_channels = 3
def __init__(self, checkpoint_path="taehv.pth", decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True)):
"""Initialize pretrained TAEHV from the given checkpoint.
Arg:
checkpoint_path: path to weight file to load. taehv.pth for Hunyuan, taew2_1.pth for Wan 2.1.
decoder_time_upscale: whether temporal upsampling is enabled for each block. upsampling can be disabled for a cheaper preview.
decoder_space_upscale: whether spatial upsampling is enabled for each block. upsampling can be disabled for a cheaper preview.
"""
super().__init__()
self.encoder = nn.Sequential(
conv(TAEHV.image_channels, 64), nn.ReLU(inplace=True),
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64), MemBlock(64, 64), MemBlock(64, 64),
TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64), MemBlock(64, 64), MemBlock(64, 64),
TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64), MemBlock(64, 64), MemBlock(64, 64),
conv(64, TAEHV.latent_channels),
)
n_f = [256, 128, 64, 64]
self.frames_to_trim = 2**sum(decoder_time_upscale) - 1
self.decoder = nn.Sequential(
Clamp(), conv(TAEHV.latent_channels, n_f[0]), nn.ReLU(inplace=True),
MemBlock(n_f[0], n_f[0]), MemBlock(n_f[0], n_f[0]), MemBlock(n_f[0], n_f[0]), nn.Upsample(
scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False),
MemBlock(n_f[1], n_f[1]), MemBlock(n_f[1], n_f[1]), MemBlock(n_f[1], n_f[1]), nn.Upsample(
scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False),
MemBlock(n_f[2], n_f[2]), MemBlock(n_f[2], n_f[2]), MemBlock(n_f[2], n_f[2]), nn.Upsample(
scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False),
nn.ReLU(inplace=True), conv(n_f[3], TAEHV.image_channels),
)
if checkpoint_path is not None:
self.load_state_dict(self.patch_tgrow_layers(torch.load(
checkpoint_path, map_location="cpu", weights_only=True)))
def patch_tgrow_layers(self, sd):
"""Patch TGrow layers to use a smaller kernel if needed.
Args:
sd: state dict to patch
"""
new_sd = self.state_dict()
for i, layer in enumerate(self.decoder):
if isinstance(layer, TGrow):
key = f"decoder.{i}.conv.weight"
if sd[key].shape[0] > new_sd[key].shape[0]:
# take the last-timestep output channels
sd[key] = sd[key][-new_sd[key].shape[0]:]
return sd
def encode_video(self, x, parallel=True, show_progress_bar=True):
"""Encode a sequence of frames.
Args:
x: input NTCHW RGB (C=3) tensor with values in [0, 1].
parallel: if True, all frames will be processed at once.
(this is faster but may require more memory).
if False, frames will be processed sequentially.
Returns NTCHW latent tensor with ~Gaussian values.
"""
return apply_model_with_memblocks(self.encoder, x, parallel, show_progress_bar)
def decode_video(self, x, parallel=True, show_progress_bar=False):
"""Decode a sequence of frames.
Args:
x: input NTCHW latent (C=12) tensor with ~Gaussian values.
parallel: if True, all frames will be processed at once.
(this is faster but may require more memory).
if False, frames will be processed sequentially.
Returns NTCHW RGB tensor with ~[0, 1] values.
"""
x = apply_model_with_memblocks(self.decoder, x, parallel, show_progress_bar)
# return x[:, self.frames_to_trim:]
return x
def forward(self, x):
return self.c(x)
@torch.no_grad()
def main():
"""Run TAEHV roundtrip reconstruction on the given video paths."""
import os
import sys
import cv2 # no highly esteemed deed is commemorated here
class VideoTensorReader:
def __init__(self, video_file_path):
self.cap = cv2.VideoCapture(video_file_path)
assert self.cap.isOpened(), f"Could not load {video_file_path}"
self.fps = self.cap.get(cv2.CAP_PROP_FPS)
def __iter__(self):
return self
def __next__(self):
ret, frame = self.cap.read()
if not ret:
self.cap.release()
raise StopIteration # End of video or error
return torch.from_numpy(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)).permute(2, 0, 1) # BGR HWC -> RGB CHW
class VideoTensorWriter:
def __init__(self, video_file_path, width_height, fps=30):
self.writer = cv2.VideoWriter(video_file_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, width_height)
assert self.writer.isOpened(), f"Could not create writer for {video_file_path}"
def write(self, frame_tensor):
assert frame_tensor.ndim == 3 and frame_tensor.shape[0] == 3, f"{frame_tensor.shape}??"
self.writer.write(cv2.cvtColor(frame_tensor.permute(1, 2, 0).numpy(),
cv2.COLOR_RGB2BGR)) # RGB CHW -> BGR HWC
def __del__(self):
if hasattr(self, 'writer'):
self.writer.release()
dev = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
dtype = torch.float16
checkpoint_path = os.getenv("TAEHV_CHECKPOINT_PATH", "taehv.pth")
checkpoint_name = os.path.splitext(os.path.basename(checkpoint_path))[0]
print(
f"Using device \033[31m{dev}\033[0m, dtype \033[32m{dtype}\033[0m, checkpoint \033[34m{checkpoint_name}\033[0m ({checkpoint_path})")
taehv = TAEHV(checkpoint_path=checkpoint_path).to(dev, dtype)
for video_path in sys.argv[1:]:
print(f"Processing {video_path}...")
video_in = VideoTensorReader(video_path)
video = torch.stack(list(video_in), 0)[None]
vid_dev = video.to(dev, dtype).div_(255.0)
# convert to device tensor
if video.numel() < 100_000_000:
print(f" {video_path} seems small enough, will process all frames in parallel")
# convert to device tensor
vid_enc = taehv.encode_video(vid_dev)
print(f" Encoded {video_path} -> {vid_enc.shape}. Decoding...")
vid_dec = taehv.decode_video(vid_enc)
print(f" Decoded {video_path} -> {vid_dec.shape}")
else:
print(f" {video_path} seems large, will process each frame sequentially")
# convert to device tensor
vid_enc = taehv.encode_video(vid_dev, parallel=False)
print(f" Encoded {video_path} -> {vid_enc.shape}. Decoding...")
vid_dec = taehv.decode_video(vid_enc, parallel=False)
print(f" Decoded {video_path} -> {vid_dec.shape}")
video_out_path = video_path + f".reconstructed_by_{checkpoint_name}.mp4"
video_out = VideoTensorWriter(
video_out_path, (vid_dec.shape[-1], vid_dec.shape[-2]), fps=int(round(video_in.fps)))
for frame in vid_dec.clamp_(0, 1).mul_(255).round_().byte().cpu()[0]:
video_out.write(frame)
print(f" Saved to {video_out_path}")
if __name__ == "__main__":
main()