multimodalart's picture
Upload 80 files
0fd2f06 verified
raw
history blame
17.5 kB
# Copied from https://github.com/lllyasviel/FramePack/tree/main/demo_utils
# Apache-2.0 License
# By lllyasviel
import os
import cv2
import json
import random
import glob
import torch
import einops
import numpy as np
import datetime
import torchvision
from PIL import Image
def min_resize(x, m):
if x.shape[0] < x.shape[1]:
s0 = m
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
else:
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
s1 = m
new_max = max(s1, s0)
raw_max = max(x.shape[0], x.shape[1])
if new_max < raw_max:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_LANCZOS4
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
return y
def d_resize(x, y):
H, W, C = y.shape
new_min = min(H, W)
raw_min = min(x.shape[0], x.shape[1])
if new_min < raw_min:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_LANCZOS4
y = cv2.resize(x, (W, H), interpolation=interpolation)
return y
def resize_and_center_crop(image, target_width, target_height):
if target_height == image.shape[0] and target_width == image.shape[1]:
return image
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return np.array(cropped_image)
def resize_and_center_crop_pytorch(image, target_width, target_height):
B, C, H, W = image.shape
if H == target_height and W == target_width:
return image
scale_factor = max(target_width / W, target_height / H)
resized_width = int(round(W * scale_factor))
resized_height = int(round(H * scale_factor))
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
top = (resized_height - target_height) // 2
left = (resized_width - target_width) // 2
cropped = resized[:, :, top:top + target_height, left:left + target_width]
return cropped
def resize_without_crop(image, target_width, target_height):
if target_height == image.shape[0] and target_width == image.shape[1]:
return image
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
def just_crop(image, w, h):
if h == image.shape[0] and w == image.shape[1]:
return image
original_height, original_width = image.shape[:2]
k = min(original_height / h, original_width / w)
new_width = int(round(w * k))
new_height = int(round(h * k))
x_start = (original_width - new_width) // 2
y_start = (original_height - new_height) // 2
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
return cropped_image
def write_to_json(data, file_path):
temp_file_path = file_path + ".tmp"
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
json.dump(data, temp_file, indent=4)
os.replace(temp_file_path, file_path)
return
def read_from_json(file_path):
with open(file_path, 'rt', encoding='utf-8') as file:
data = json.load(file)
return data
def get_active_parameters(m):
return {k: v for k, v in m.named_parameters() if v.requires_grad}
def cast_training_params(m, dtype=torch.float32):
result = {}
for n, param in m.named_parameters():
if param.requires_grad:
param.data = param.to(dtype)
result[n] = param
return result
def separate_lora_AB(parameters, B_patterns=None):
parameters_normal = {}
parameters_B = {}
if B_patterns is None:
B_patterns = ['.lora_B.', '__zero__']
for k, v in parameters.items():
if any(B_pattern in k for B_pattern in B_patterns):
parameters_B[k] = v
else:
parameters_normal[k] = v
return parameters_normal, parameters_B
def set_attr_recursive(obj, attr, value):
attrs = attr.split(".")
for name in attrs[:-1]:
obj = getattr(obj, name)
setattr(obj, attrs[-1], value)
return
def print_tensor_list_size(tensors):
total_size = 0
total_elements = 0
if isinstance(tensors, dict):
tensors = tensors.values()
for tensor in tensors:
total_size += tensor.nelement() * tensor.element_size()
total_elements += tensor.nelement()
total_size_MB = total_size / (1024 ** 2)
total_elements_B = total_elements / 1e9
print(f"Total number of tensors: {len(tensors)}")
print(f"Total size of tensors: {total_size_MB:.2f} MB")
print(f"Total number of parameters: {total_elements_B:.3f} billion")
return
@torch.no_grad()
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
batch_size = a.size(0)
if b is None:
b = torch.zeros_like(a)
if mask_a is None:
mask_a = torch.rand(batch_size) < probability_a
mask_a = mask_a.to(a.device)
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
result = torch.where(mask_a, a, b)
return result
@torch.no_grad()
def zero_module(module):
for p in module.parameters():
p.detach().zero_()
return module
@torch.no_grad()
def supress_lower_channels(m, k, alpha=0.01):
data = m.weight.data.clone()
assert int(data.shape[1]) >= k
data[:, :k] = data[:, :k] * alpha
m.weight.data = data.contiguous().clone()
return m
def freeze_module(m):
if not hasattr(m, '_forward_inside_frozen_module'):
m._forward_inside_frozen_module = m.forward
m.requires_grad_(False)
m.forward = torch.no_grad()(m.forward)
return m
def get_latest_safetensors(folder_path):
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
if not safetensors_files:
raise ValueError('No file to resume!')
latest_file = max(safetensors_files, key=os.path.getmtime)
latest_file = os.path.abspath(os.path.realpath(latest_file))
return latest_file
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
tags = tags_str.split(', ')
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
prompt = ', '.join(tags)
return prompt
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
if round_to_int:
numbers = np.round(numbers).astype(int)
return numbers.tolist()
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
edges = np.linspace(0, 1, n + 1)
points = np.random.uniform(edges[:-1], edges[1:])
numbers = inclusive + (exclusive - inclusive) * points
if round_to_int:
numbers = np.round(numbers).astype(int)
return numbers.tolist()
def soft_append_bcthw(history, current, overlap=0):
if overlap <= 0:
return torch.cat([history, current], dim=2)
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
return output.to(history)
def save_bcthw_as_mp4(x, output_filename, fps=10, crf=0):
b, c, t, h, w = x.shape
per_row = b
for p in [6, 5, 4, 3, 2]:
if b % p == 0:
per_row = p
break
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
x = x.detach().cpu().to(torch.uint8)
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': str(int(crf))})
return x
def save_bcthw_as_png(x, output_filename):
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
x = x.detach().cpu().to(torch.uint8)
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
torchvision.io.write_png(x, output_filename)
return output_filename
def save_bchw_as_png(x, output_filename):
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
x = x.detach().cpu().to(torch.uint8)
x = einops.rearrange(x, 'b c h w -> c h (b w)')
torchvision.io.write_png(x, output_filename)
return output_filename
def add_tensors_with_padding(tensor1, tensor2):
if tensor1.shape == tensor2.shape:
return tensor1 + tensor2
shape1 = tensor1.shape
shape2 = tensor2.shape
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
padded_tensor1 = torch.zeros(new_shape)
padded_tensor2 = torch.zeros(new_shape)
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
result = padded_tensor1 + padded_tensor2
return result
def print_free_mem():
torch.cuda.empty_cache()
free_mem, total_mem = torch.cuda.mem_get_info(0)
free_mem_mb = free_mem / (1024 ** 2)
total_mem_mb = total_mem / (1024 ** 2)
print(f"Free memory: {free_mem_mb:.2f} MB")
print(f"Total memory: {total_mem_mb:.2f} MB")
return
def print_gpu_parameters(device, state_dict, log_count=1):
summary = {"device": device, "keys_count": len(state_dict)}
logged_params = {}
for i, (key, tensor) in enumerate(state_dict.items()):
if i >= log_count:
break
logged_params[key] = tensor.flatten()[:3].tolist()
summary["params"] = logged_params
print(str(summary))
return
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
from PIL import Image, ImageDraw, ImageFont
txt = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype(font_path, size=size)
if text == '':
return np.array(txt)
# Split text into lines that fit within the image width
lines = []
words = text.split()
current_line = words[0]
for word in words[1:]:
line_with_word = f"{current_line} {word}"
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
current_line = line_with_word
else:
lines.append(current_line)
current_line = word
lines.append(current_line)
# Draw the text line by line
y = 0
line_height = draw.textbbox((0, 0), "A", font=font)[3]
for line in lines:
if y + line_height > height:
break # stop drawing if the next line will be outside the image
draw.text((0, y), line, fill="black", font=font)
y += line_height
return np.array(txt)
def blue_mark(x):
x = x.copy()
c = x[:, :, 2]
b = cv2.blur(c, (9, 9))
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
return x
def green_mark(x):
x = x.copy()
x[:, :, 2] = -1
x[:, :, 0] = -1
return x
def frame_mark(x):
x = x.copy()
x[:64] = -1
x[-64:] = -1
x[:, :8] = 1
x[:, -8:] = 1
return x
@torch.inference_mode()
def pytorch2numpy(imgs):
results = []
for x in imgs:
y = x.movedim(0, -1)
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
h = h.movedim(-1, 1)
return h
@torch.no_grad()
def duplicate_prefix_to_suffix(x, count, zero_out=False):
if zero_out:
return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
else:
return torch.cat([x, x[:count]], dim=0)
def weighted_mse(a, b, weight):
return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
x = (x - x_min) / (x_max - x_min)
x = max(0.0, min(x, 1.0))
x = x ** sigma
return y_min + x * (y_max - y_min)
def expand_to_dims(x, target_dims):
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
if tensor is None:
return None
first_dim = tensor.shape[0]
if first_dim == batch_size:
return tensor
if batch_size % first_dim != 0:
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
repeat_times = batch_size // first_dim
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
def dim5(x):
return expand_to_dims(x, 5)
def dim4(x):
return expand_to_dims(x, 4)
def dim3(x):
return expand_to_dims(x, 3)
def crop_or_pad_yield_mask(x, length):
B, F, C = x.shape
device = x.device
dtype = x.dtype
if F < length:
y = torch.zeros((B, length, C), dtype=dtype, device=device)
mask = torch.zeros((B, length), dtype=torch.bool, device=device)
y[:, :F, :] = x
mask[:, :F] = True
return y, mask
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
def extend_dim(x, dim, minimal_length, zero_pad=False):
original_length = int(x.shape[dim])
if original_length >= minimal_length:
return x
if zero_pad:
padding_shape = list(x.shape)
padding_shape[dim] = minimal_length - original_length
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
else:
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
last_element = x[idx]
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
return torch.cat([x, padding], dim=dim)
def lazy_positional_encoding(t, repeats=None):
if not isinstance(t, list):
t = [t]
from diffusers.models.embeddings import get_timestep_embedding
te = torch.tensor(t)
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
if repeats is None:
return te
te = te[:, None, :].expand(-1, repeats, -1)
return te
def state_dict_offset_merge(A, B, C=None):
result = {}
keys = A.keys()
for key in keys:
A_value = A[key]
B_value = B[key].to(A_value)
if C is None:
result[key] = A_value + B_value
else:
C_value = C[key].to(A_value)
result[key] = A_value + B_value - C_value
return result
def state_dict_weighted_merge(state_dicts, weights):
if len(state_dicts) != len(weights):
raise ValueError("Number of state dictionaries must match number of weights")
if not state_dicts:
return {}
total_weight = sum(weights)
if total_weight == 0:
raise ValueError("Sum of weights cannot be zero")
normalized_weights = [w / total_weight for w in weights]
keys = state_dicts[0].keys()
result = {}
for key in keys:
result[key] = state_dicts[0][key] * normalized_weights[0]
for i in range(1, len(state_dicts)):
state_dict_value = state_dicts[i][key].to(result[key])
result[key] += state_dict_value * normalized_weights[i]
return result
def group_files_by_folder(all_files):
grouped_files = {}
for file in all_files:
folder_name = os.path.basename(os.path.dirname(file))
if folder_name not in grouped_files:
grouped_files[folder_name] = []
grouped_files[folder_name].append(file)
list_of_lists = list(grouped_files.values())
return list_of_lists
def generate_timestamp():
now = datetime.datetime.now()
timestamp = now.strftime('%y%m%d_%H%M%S')
milliseconds = f"{int(now.microsecond / 1000):03d}"
random_number = random.randint(0, 9999)
return f"{timestamp}_{milliseconds}_{random_number}"
def write_PIL_image_with_png_info(image, metadata, path):
from PIL.PngImagePlugin import PngInfo
png_info = PngInfo()
for key, value in metadata.items():
png_info.add_text(key, value)
image.save(path, "PNG", pnginfo=png_info)
return image
def torch_safe_save(content, path):
torch.save(content, path + '_tmp')
os.replace(path + '_tmp', path)
return path
def move_optimizer_to_device(optimizer, device):
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)