multimodalart's picture
Upload 80 files
0fd2f06 verified
raw
history blame
15.5 kB
from pipeline import SelfForcingTrainingPipeline
import torch.nn.functional as F
from typing import Optional, Tuple
import torch
from model.base import SelfForcingModel
class DMD(SelfForcingModel):
def __init__(self, args, device):
"""
Initialize the DMD (Distribution Matching Distillation) module.
This class is self-contained and compute generator and fake score losses
in the forward pass.
"""
super().__init__(args, device)
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1)
self.same_step_across_blocks = getattr(args, "same_step_across_blocks", True)
self.num_training_frames = getattr(args, "num_training_frames", 21)
if self.num_frame_per_block > 1:
self.generator.model.num_frame_per_block = self.num_frame_per_block
self.independent_first_frame = getattr(args, "independent_first_frame", False)
if self.independent_first_frame:
self.generator.model.independent_first_frame = True
if args.gradient_checkpointing:
self.generator.enable_gradient_checkpointing()
self.fake_score.enable_gradient_checkpointing()
# this will be init later with fsdp-wrapped modules
self.inference_pipeline: SelfForcingTrainingPipeline = None
# Step 2: Initialize all dmd hyperparameters
self.num_train_timestep = args.num_train_timestep
self.min_step = int(0.02 * self.num_train_timestep)
self.max_step = int(0.98 * self.num_train_timestep)
if hasattr(args, "real_guidance_scale"):
self.real_guidance_scale = args.real_guidance_scale
self.fake_guidance_scale = args.fake_guidance_scale
else:
self.real_guidance_scale = args.guidance_scale
self.fake_guidance_scale = 0.0
self.timestep_shift = getattr(args, "timestep_shift", 1.0)
self.ts_schedule = getattr(args, "ts_schedule", True)
self.ts_schedule_max = getattr(args, "ts_schedule_max", False)
self.min_score_timestep = getattr(args, "min_score_timestep", 0)
if getattr(self.scheduler, "alphas_cumprod", None) is not None:
self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device)
else:
self.scheduler.alphas_cumprod = None
def _compute_kl_grad(
self, noisy_image_or_video: torch.Tensor,
estimated_clean_image_or_video: torch.Tensor,
timestep: torch.Tensor,
conditional_dict: dict, unconditional_dict: dict,
normalization: bool = True
) -> Tuple[torch.Tensor, dict]:
"""
Compute the KL grad (eq 7 in https://arxiv.org/abs/2311.18828).
Input:
- noisy_image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
- estimated_clean_image_or_video: a tensor with shape [B, F, C, H, W] representing the estimated clean image or video.
- timestep: a tensor with shape [B, F] containing the randomly generated timestep.
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- normalization: a boolean indicating whether to normalize the gradient.
Output:
- kl_grad: a tensor representing the KL grad.
- kl_log_dict: a dictionary containing the intermediate tensors for logging.
"""
# Step 1: Compute the fake score
_, pred_fake_image_cond = self.fake_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=conditional_dict,
timestep=timestep
)
if self.fake_guidance_scale != 0.0:
_, pred_fake_image_uncond = self.fake_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=unconditional_dict,
timestep=timestep
)
pred_fake_image = pred_fake_image_cond + (
pred_fake_image_cond - pred_fake_image_uncond
) * self.fake_guidance_scale
else:
pred_fake_image = pred_fake_image_cond
# Step 2: Compute the real score
# We compute the conditional and unconditional prediction
# and add them together to achieve cfg (https://arxiv.org/abs/2207.12598)
_, pred_real_image_cond = self.real_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=conditional_dict,
timestep=timestep
)
_, pred_real_image_uncond = self.real_score(
noisy_image_or_video=noisy_image_or_video,
conditional_dict=unconditional_dict,
timestep=timestep
)
pred_real_image = pred_real_image_cond + (
pred_real_image_cond - pred_real_image_uncond
) * self.real_guidance_scale
# Step 3: Compute the DMD gradient (DMD paper eq. 7).
grad = (pred_fake_image - pred_real_image)
# TODO: Change the normalizer for causal teacher
if normalization:
# Step 4: Gradient normalization (DMD paper eq. 8).
p_real = (estimated_clean_image_or_video - pred_real_image)
normalizer = torch.abs(p_real).mean(dim=[1, 2, 3, 4], keepdim=True)
grad = grad / normalizer
grad = torch.nan_to_num(grad)
return grad, {
"dmdtrain_gradient_norm": torch.mean(torch.abs(grad)).detach(),
"timestep": timestep.detach()
}
def compute_distribution_matching_loss(
self,
image_or_video: torch.Tensor,
conditional_dict: dict,
unconditional_dict: dict,
gradient_mask: Optional[torch.Tensor] = None,
denoised_timestep_from: int = 0,
denoised_timestep_to: int = 0
) -> Tuple[torch.Tensor, dict]:
"""
Compute the DMD loss (eq 7 in https://arxiv.org/abs/2311.18828).
Input:
- image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images.
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- gradient_mask: a boolean tensor with the same shape as image_or_video indicating which pixels to compute loss .
Output:
- dmd_loss: a scalar tensor representing the DMD loss.
- dmd_log_dict: a dictionary containing the intermediate tensors for logging.
"""
original_latent = image_or_video
batch_size, num_frame = image_or_video.shape[:2]
with torch.no_grad():
# Step 1: Randomly sample timestep based on the given schedule and corresponding noise
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
timestep = self._get_timestep(
min_timestep,
max_timestep,
batch_size,
num_frame,
self.num_frame_per_block,
uniform_timestep=True
)
# TODO:should we change it to `timestep = self.scheduler.timesteps[timestep]`?
if self.timestep_shift > 1:
timestep = self.timestep_shift * \
(timestep / 1000) / \
(1 + (self.timestep_shift - 1) * (timestep / 1000)) * 1000
timestep = timestep.clamp(self.min_step, self.max_step)
noise = torch.randn_like(image_or_video)
noisy_latent = self.scheduler.add_noise(
image_or_video.flatten(0, 1),
noise.flatten(0, 1),
timestep.flatten(0, 1)
).detach().unflatten(0, (batch_size, num_frame))
# Step 2: Compute the KL grad
grad, dmd_log_dict = self._compute_kl_grad(
noisy_image_or_video=noisy_latent,
estimated_clean_image_or_video=original_latent,
timestep=timestep,
conditional_dict=conditional_dict,
unconditional_dict=unconditional_dict
)
if gradient_mask is not None:
dmd_loss = 0.5 * F.mse_loss(original_latent.double(
)[gradient_mask], (original_latent.double() - grad.double()).detach()[gradient_mask], reduction="mean")
else:
dmd_loss = 0.5 * F.mse_loss(original_latent.double(
), (original_latent.double() - grad.double()).detach(), reduction="mean")
return dmd_loss, dmd_log_dict
def generator_loss(
self,
image_or_video_shape,
conditional_dict: dict,
unconditional_dict: dict,
clean_latent: torch.Tensor,
initial_latent: torch.Tensor = None
) -> Tuple[torch.Tensor, dict]:
"""
Generate image/videos from noise and compute the DMD loss.
The noisy input to the generator is backward simulated.
This removes the need of any datasets during distillation.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
Output:
- loss: a scalar tensor representing the generator loss.
- generator_log_dict: a dictionary containing the intermediate tensors for logging.
"""
# Step 1: Unroll generator to obtain fake videos
pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
initial_latent=initial_latent
)
# Step 2: Compute the DMD loss
dmd_loss, dmd_log_dict = self.compute_distribution_matching_loss(
image_or_video=pred_image,
conditional_dict=conditional_dict,
unconditional_dict=unconditional_dict,
gradient_mask=gradient_mask,
denoised_timestep_from=denoised_timestep_from,
denoised_timestep_to=denoised_timestep_to
)
return dmd_loss, dmd_log_dict
def critic_loss(
self,
image_or_video_shape,
conditional_dict: dict,
unconditional_dict: dict,
clean_latent: torch.Tensor,
initial_latent: torch.Tensor = None
) -> Tuple[torch.Tensor, dict]:
"""
Generate image/videos from noise and train the critic with generated samples.
The noisy input to the generator is backward simulated.
This removes the need of any datasets during distillation.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
Output:
- loss: a scalar tensor representing the generator loss.
- critic_log_dict: a dictionary containing the intermediate tensors for logging.
"""
# Step 1: Run generator on backward simulated noisy input
with torch.no_grad():
generated_image, _, denoised_timestep_from, denoised_timestep_to = self._run_generator(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
initial_latent=initial_latent
)
# Step 2: Compute the fake prediction
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep
critic_timestep = self._get_timestep(
min_timestep,
max_timestep,
image_or_video_shape[0],
image_or_video_shape[1],
self.num_frame_per_block,
uniform_timestep=True
)
if self.timestep_shift > 1:
critic_timestep = self.timestep_shift * \
(critic_timestep / 1000) / (1 + (self.timestep_shift - 1) * (critic_timestep / 1000)) * 1000
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step)
critic_noise = torch.randn_like(generated_image)
noisy_generated_image = self.scheduler.add_noise(
generated_image.flatten(0, 1),
critic_noise.flatten(0, 1),
critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
_, pred_fake_image = self.fake_score(
noisy_image_or_video=noisy_generated_image,
conditional_dict=conditional_dict,
timestep=critic_timestep
)
# Step 3: Compute the denoising loss for the fake critic
if self.args.denoising_loss_type == "flow":
from utils.wan_wrapper import WanDiffusionWrapper
flow_pred = WanDiffusionWrapper._convert_x0_to_flow_pred(
scheduler=self.scheduler,
x0_pred=pred_fake_image.flatten(0, 1),
xt=noisy_generated_image.flatten(0, 1),
timestep=critic_timestep.flatten(0, 1)
)
pred_fake_noise = None
else:
flow_pred = None
pred_fake_noise = self.scheduler.convert_x0_to_noise(
x0=pred_fake_image.flatten(0, 1),
xt=noisy_generated_image.flatten(0, 1),
timestep=critic_timestep.flatten(0, 1)
).unflatten(0, image_or_video_shape[:2])
denoising_loss = self.denoising_loss_func(
x=generated_image.flatten(0, 1),
x_pred=pred_fake_image.flatten(0, 1),
noise=critic_noise.flatten(0, 1),
noise_pred=pred_fake_noise,
alphas_cumprod=self.scheduler.alphas_cumprod,
timestep=critic_timestep.flatten(0, 1),
flow_pred=flow_pred
)
# Step 5: Debugging Log
critic_log_dict = {
"critic_timestep": critic_timestep.detach()
}
return denoising_loss, critic_log_dict