Spaces:
Running
on
Zero
Running
on
Zero
import copy | |
from pipeline import SelfForcingTrainingPipeline | |
import torch.nn.functional as F | |
from typing import Tuple | |
import torch | |
from model.base import SelfForcingModel | |
class GAN(SelfForcingModel): | |
def __init__(self, args, device): | |
""" | |
Initialize the GAN module. | |
This class is self-contained and compute generator and fake score losses | |
in the forward pass. | |
""" | |
super().__init__(args, device) | |
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) | |
self.same_step_across_blocks = getattr(args, "same_step_across_blocks", True) | |
self.concat_time_embeddings = getattr(args, "concat_time_embeddings", False) | |
self.num_class = args.num_class | |
self.relativistic_discriminator = getattr(args, "relativistic_discriminator", False) | |
if self.num_frame_per_block > 1: | |
self.generator.model.num_frame_per_block = self.num_frame_per_block | |
self.fake_score.adding_cls_branch( | |
atten_dim=1536, num_class=args.num_class, time_embed_dim=1536 if self.concat_time_embeddings else 0) | |
self.fake_score.model.requires_grad_(True) | |
self.independent_first_frame = getattr(args, "independent_first_frame", False) | |
if self.independent_first_frame: | |
self.generator.model.independent_first_frame = True | |
if args.gradient_checkpointing: | |
self.generator.enable_gradient_checkpointing() | |
self.fake_score.enable_gradient_checkpointing() | |
# this will be init later with fsdp-wrapped modules | |
self.inference_pipeline: SelfForcingTrainingPipeline = None | |
# Step 2: Initialize all dmd hyperparameters | |
self.num_train_timestep = args.num_train_timestep | |
self.min_step = int(0.02 * self.num_train_timestep) | |
self.max_step = int(0.98 * self.num_train_timestep) | |
if hasattr(args, "real_guidance_scale"): | |
self.real_guidance_scale = args.real_guidance_scale | |
self.fake_guidance_scale = args.fake_guidance_scale | |
else: | |
self.real_guidance_scale = args.guidance_scale | |
self.fake_guidance_scale = 0.0 | |
self.timestep_shift = getattr(args, "timestep_shift", 1.0) | |
self.critic_timestep_shift = getattr(args, "critic_timestep_shift", self.timestep_shift) | |
self.ts_schedule = getattr(args, "ts_schedule", True) | |
self.ts_schedule_max = getattr(args, "ts_schedule_max", False) | |
self.min_score_timestep = getattr(args, "min_score_timestep", 0) | |
self.gan_g_weight = getattr(args, "gan_g_weight", 1e-2) | |
self.gan_d_weight = getattr(args, "gan_d_weight", 1e-2) | |
self.r1_weight = getattr(args, "r1_weight", 0.0) | |
self.r2_weight = getattr(args, "r2_weight", 0.0) | |
self.r1_sigma = getattr(args, "r1_sigma", 0.01) | |
self.r2_sigma = getattr(args, "r2_sigma", 0.01) | |
if getattr(self.scheduler, "alphas_cumprod", None) is not None: | |
self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device) | |
else: | |
self.scheduler.alphas_cumprod = None | |
def _run_cls_pred_branch(self, | |
noisy_image_or_video: torch.Tensor, | |
conditional_dict: dict, | |
timestep: torch.Tensor) -> torch.Tensor: | |
""" | |
Run the classifier prediction branch on the generated image or video. | |
Input: | |
- image_or_video: a tensor with shape [B, F, C, H, W]. | |
Output: | |
- cls_pred: a tensor with shape [B, 1, 1, 1, 1] representing the feature map for classification. | |
""" | |
_, _, noisy_logit = self.fake_score( | |
noisy_image_or_video=noisy_image_or_video, | |
conditional_dict=conditional_dict, | |
timestep=timestep, | |
classify_mode=True, | |
concat_time_embeddings=self.concat_time_embeddings | |
) | |
return noisy_logit | |
def generator_loss( | |
self, | |
image_or_video_shape, | |
conditional_dict: dict, | |
unconditional_dict: dict, | |
clean_latent: torch.Tensor, | |
initial_latent: torch.Tensor = None | |
) -> Tuple[torch.Tensor, dict]: | |
""" | |
Generate image/videos from noise and compute the DMD loss. | |
The noisy input to the generator is backward simulated. | |
This removes the need of any datasets during distillation. | |
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. | |
Input: | |
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. | |
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). | |
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). | |
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. | |
Output: | |
- loss: a scalar tensor representing the generator loss. | |
- generator_log_dict: a dictionary containing the intermediate tensors for logging. | |
""" | |
# Step 1: Unroll generator to obtain fake videos | |
pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator( | |
image_or_video_shape=image_or_video_shape, | |
conditional_dict=conditional_dict, | |
initial_latent=initial_latent | |
) | |
# Step 2: Get timestep and add noise to generated/real latents | |
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep | |
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep | |
critic_timestep = self._get_timestep( | |
min_timestep, | |
max_timestep, | |
image_or_video_shape[0], | |
image_or_video_shape[1], | |
self.num_frame_per_block, | |
uniform_timestep=True | |
) | |
if self.critic_timestep_shift > 1: | |
critic_timestep = self.critic_timestep_shift * \ | |
(critic_timestep / 1000) / (1 + (self.critic_timestep_shift - 1) * (critic_timestep / 1000)) * 1000 | |
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step) | |
critic_noise = torch.randn_like(pred_image) | |
noisy_fake_latent = self.scheduler.add_noise( | |
pred_image.flatten(0, 1), | |
critic_noise.flatten(0, 1), | |
critic_timestep.flatten(0, 1) | |
).unflatten(0, image_or_video_shape[:2]) | |
# Step 4: Compute the real GAN discriminator loss | |
real_image_or_video = clean_latent.clone() | |
critic_noise = torch.randn_like(real_image_or_video) | |
noisy_real_latent = self.scheduler.add_noise( | |
real_image_or_video.flatten(0, 1), | |
critic_noise.flatten(0, 1), | |
critic_timestep.flatten(0, 1) | |
).unflatten(0, image_or_video_shape[:2]) | |
conditional_dict["prompt_embeds"] = torch.concatenate( | |
(conditional_dict["prompt_embeds"], conditional_dict["prompt_embeds"]), dim=0) | |
critic_timestep = torch.concatenate((critic_timestep, critic_timestep), dim=0) | |
noisy_latent = torch.concatenate((noisy_fake_latent, noisy_real_latent), dim=0) | |
_, _, noisy_logit = self.fake_score( | |
noisy_image_or_video=noisy_latent, | |
conditional_dict=conditional_dict, | |
timestep=critic_timestep, | |
classify_mode=True, | |
concat_time_embeddings=self.concat_time_embeddings | |
) | |
noisy_fake_logit, noisy_real_logit = noisy_logit.chunk(2, dim=0) | |
if not self.relativistic_discriminator: | |
gan_G_loss = F.softplus(-noisy_fake_logit.float()).mean() * self.gan_g_weight | |
else: | |
relative_fake_logit = noisy_fake_logit - noisy_real_logit | |
gan_G_loss = F.softplus(-relative_fake_logit.float()).mean() * self.gan_g_weight | |
return gan_G_loss | |
def critic_loss( | |
self, | |
image_or_video_shape, | |
conditional_dict: dict, | |
unconditional_dict: dict, | |
clean_latent: torch.Tensor, | |
real_image_or_video: torch.Tensor, | |
initial_latent: torch.Tensor = None | |
) -> Tuple[torch.Tensor, dict]: | |
""" | |
Generate image/videos from noise and train the critic with generated samples. | |
The noisy input to the generator is backward simulated. | |
This removes the need of any datasets during distillation. | |
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. | |
Input: | |
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. | |
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). | |
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). | |
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. | |
Output: | |
- loss: a scalar tensor representing the generator loss. | |
- critic_log_dict: a dictionary containing the intermediate tensors for logging. | |
""" | |
# Step 1: Run generator on backward simulated noisy input | |
with torch.no_grad(): | |
generated_image, _, denoised_timestep_from, denoised_timestep_to, num_sim_steps = self._run_generator( | |
image_or_video_shape=image_or_video_shape, | |
conditional_dict=conditional_dict, | |
initial_latent=initial_latent | |
) | |
# Step 2: Get timestep and add noise to generated/real latents | |
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep | |
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep | |
critic_timestep = self._get_timestep( | |
min_timestep, | |
max_timestep, | |
image_or_video_shape[0], | |
image_or_video_shape[1], | |
self.num_frame_per_block, | |
uniform_timestep=True | |
) | |
if self.critic_timestep_shift > 1: | |
critic_timestep = self.critic_timestep_shift * \ | |
(critic_timestep / 1000) / (1 + (self.critic_timestep_shift - 1) * (critic_timestep / 1000)) * 1000 | |
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step) | |
critic_noise = torch.randn_like(generated_image) | |
noisy_fake_latent = self.scheduler.add_noise( | |
generated_image.flatten(0, 1), | |
critic_noise.flatten(0, 1), | |
critic_timestep.flatten(0, 1) | |
).unflatten(0, image_or_video_shape[:2]) | |
# Step 4: Compute the real GAN discriminator loss | |
noisy_real_latent = self.scheduler.add_noise( | |
real_image_or_video.flatten(0, 1), | |
critic_noise.flatten(0, 1), | |
critic_timestep.flatten(0, 1) | |
).unflatten(0, image_or_video_shape[:2]) | |
conditional_dict_cloned = copy.deepcopy(conditional_dict) | |
conditional_dict_cloned["prompt_embeds"] = torch.concatenate( | |
(conditional_dict_cloned["prompt_embeds"], conditional_dict_cloned["prompt_embeds"]), dim=0) | |
_, _, noisy_logit = self.fake_score( | |
noisy_image_or_video=torch.concatenate((noisy_fake_latent, noisy_real_latent), dim=0), | |
conditional_dict=conditional_dict_cloned, | |
timestep=torch.concatenate((critic_timestep, critic_timestep), dim=0), | |
classify_mode=True, | |
concat_time_embeddings=self.concat_time_embeddings | |
) | |
noisy_fake_logit, noisy_real_logit = noisy_logit.chunk(2, dim=0) | |
if not self.relativistic_discriminator: | |
gan_D_loss = F.softplus(-noisy_real_logit.float()).mean() + F.softplus(noisy_fake_logit.float()).mean() | |
else: | |
relative_real_logit = noisy_real_logit - noisy_fake_logit | |
gan_D_loss = F.softplus(-relative_real_logit.float()).mean() | |
gan_D_loss = gan_D_loss * self.gan_d_weight | |
# R1 regularization | |
if self.r1_weight > 0.: | |
noisy_real_latent_perturbed = noisy_real_latent.clone() | |
epison_real = self.r1_sigma * torch.randn_like(noisy_real_latent_perturbed) | |
noisy_real_latent_perturbed = noisy_real_latent_perturbed + epison_real | |
noisy_real_logit_perturbed = self._run_cls_pred_branch( | |
noisy_image_or_video=noisy_real_latent_perturbed, | |
conditional_dict=conditional_dict, | |
timestep=critic_timestep | |
) | |
r1_grad = (noisy_real_logit_perturbed - noisy_real_logit) / self.r1_sigma | |
r1_loss = self.r1_weight * torch.mean((r1_grad)**2) | |
else: | |
r1_loss = torch.zeros_like(gan_D_loss) | |
# R2 regularization | |
if self.r2_weight > 0.: | |
noisy_fake_latent_perturbed = noisy_fake_latent.clone() | |
epison_generated = self.r2_sigma * torch.randn_like(noisy_fake_latent_perturbed) | |
noisy_fake_latent_perturbed = noisy_fake_latent_perturbed + epison_generated | |
noisy_fake_logit_perturbed = self._run_cls_pred_branch( | |
noisy_image_or_video=noisy_fake_latent_perturbed, | |
conditional_dict=conditional_dict, | |
timestep=critic_timestep | |
) | |
r2_grad = (noisy_fake_logit_perturbed - noisy_fake_logit) / self.r2_sigma | |
r2_loss = self.r2_weight * torch.mean((r2_grad)**2) | |
else: | |
r2_loss = torch.zeros_like(r2_loss) | |
critic_log_dict = { | |
"critic_timestep": critic_timestep.detach(), | |
'noisy_real_logit': noisy_real_logit.detach(), | |
'noisy_fake_logit': noisy_fake_logit.detach(), | |
} | |
return (gan_D_loss, r1_loss, r2_loss), critic_log_dict | |