self-forcing / utils /scheduler.py
multimodalart's picture
Upload 80 files
0fd2f06 verified
raw
history blame
7.98 kB
from abc import abstractmethod, ABC
import torch
class SchedulerInterface(ABC):
"""
Base class for diffusion noise schedule.
"""
alphas_cumprod: torch.Tensor # [T], alphas for defining the noise schedule
@abstractmethod
def add_noise(
self, clean_latent: torch.Tensor,
noise: torch.Tensor, timestep: torch.Tensor
):
"""
Diffusion forward corruption process.
Input:
- clean_latent: the clean latent with shape [B, C, H, W]
- noise: the noise with shape [B, C, H, W]
- timestep: the timestep with shape [B]
Output: the corrupted latent with shape [B, C, H, W]
"""
pass
def convert_x0_to_noise(
self, x0: torch.Tensor, xt: torch.Tensor,
timestep: torch.Tensor
) -> torch.Tensor:
"""
Convert the diffusion network's x0 prediction to noise predidction.
x0: the predicted clean data with shape [B, C, H, W]
xt: the input noisy data with shape [B, C, H, W]
timestep: the timestep with shape [B]
noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) (eq 11 in https://arxiv.org/abs/2311.18828)
"""
# use higher precision for calculations
original_dtype = x0.dtype
x0, xt, alphas_cumprod = map(
lambda x: x.double().to(x0.device), [x0, xt,
self.alphas_cumprod]
)
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
beta_prod_t = 1 - alpha_prod_t
noise_pred = (xt - alpha_prod_t **
(0.5) * x0) / beta_prod_t ** (0.5)
return noise_pred.to(original_dtype)
def convert_noise_to_x0(
self, noise: torch.Tensor, xt: torch.Tensor,
timestep: torch.Tensor
) -> torch.Tensor:
"""
Convert the diffusion network's noise prediction to x0 predidction.
noise: the predicted noise with shape [B, C, H, W]
xt: the input noisy data with shape [B, C, H, W]
timestep: the timestep with shape [B]
x0 = (x_t - sqrt(beta_t) * noise) / sqrt(alpha_t) (eq 11 in https://arxiv.org/abs/2311.18828)
"""
# use higher precision for calculations
original_dtype = noise.dtype
noise, xt, alphas_cumprod = map(
lambda x: x.double().to(noise.device), [noise, xt,
self.alphas_cumprod]
)
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
beta_prod_t = 1 - alpha_prod_t
x0_pred = (xt - beta_prod_t **
(0.5) * noise) / alpha_prod_t ** (0.5)
return x0_pred.to(original_dtype)
def convert_velocity_to_x0(
self, velocity: torch.Tensor, xt: torch.Tensor,
timestep: torch.Tensor
) -> torch.Tensor:
"""
Convert the diffusion network's velocity prediction to x0 predidction.
velocity: the predicted noise with shape [B, C, H, W]
xt: the input noisy data with shape [B, C, H, W]
timestep: the timestep with shape [B]
v = sqrt(alpha_t) * noise - sqrt(beta_t) x0
noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t)
given v, x_t, we have
x0 = sqrt(alpha_t) * x_t - sqrt(beta_t) * v
see derivations https://chatgpt.com/share/679fb6c8-3a30-8008-9b0e-d1ae892dac56
"""
# use higher precision for calculations
original_dtype = velocity.dtype
velocity, xt, alphas_cumprod = map(
lambda x: x.double().to(velocity.device), [velocity, xt,
self.alphas_cumprod]
)
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
beta_prod_t = 1 - alpha_prod_t
x0_pred = (alpha_prod_t ** 0.5) * xt - (beta_prod_t ** 0.5) * velocity
return x0_pred.to(original_dtype)
class FlowMatchScheduler():
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
self.num_train_timesteps = num_train_timesteps
self.shift = shift
self.sigma_max = sigma_max
self.sigma_min = sigma_min
self.inverse_timesteps = inverse_timesteps
self.extra_one_step = extra_one_step
self.reverse_sigmas = reverse_sigmas
self.set_timesteps(num_inference_steps)
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False):
sigma_start = self.sigma_min + \
(self.sigma_max - self.sigma_min) * denoising_strength
if self.extra_one_step:
self.sigmas = torch.linspace(
sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
else:
self.sigmas = torch.linspace(
sigma_start, self.sigma_min, num_inference_steps)
if self.inverse_timesteps:
self.sigmas = torch.flip(self.sigmas, dims=[0])
self.sigmas = self.shift * self.sigmas / \
(1 + (self.shift - 1) * self.sigmas)
if self.reverse_sigmas:
self.sigmas = 1 - self.sigmas
self.timesteps = self.sigmas * self.num_train_timesteps
if training:
x = self.timesteps
y = torch.exp(-2 * ((x - num_inference_steps / 2) /
num_inference_steps) ** 2)
y_shifted = y - y.min()
bsmntw_weighing = y_shifted * \
(num_inference_steps / y_shifted.sum())
self.linear_timesteps_weights = bsmntw_weighing
def step(self, model_output, timestep, sample, to_final=False):
if timestep.ndim == 2:
timestep = timestep.flatten(0, 1)
self.sigmas = self.sigmas.to(model_output.device)
self.timesteps = self.timesteps.to(model_output.device)
timestep_id = torch.argmin(
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
if to_final or (timestep_id + 1 >= len(self.timesteps)).any():
sigma_ = 1 if (
self.inverse_timesteps or self.reverse_sigmas) else 0
else:
sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1)
prev_sample = sample + model_output * (sigma_ - sigma)
return prev_sample
def add_noise(self, original_samples, noise, timestep):
"""
Diffusion forward corruption process.
Input:
- clean_latent: the clean latent with shape [B*T, C, H, W]
- noise: the noise with shape [B*T, C, H, W]
- timestep: the timestep with shape [B*T]
Output: the corrupted latent with shape [B*T, C, H, W]
"""
if timestep.ndim == 2:
timestep = timestep.flatten(0, 1)
self.sigmas = self.sigmas.to(noise.device)
self.timesteps = self.timesteps.to(noise.device)
timestep_id = torch.argmin(
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
sample = (1 - sigma) * original_samples + sigma * noise
return sample.type_as(noise)
def training_target(self, sample, noise, timestep):
target = noise - sample
return target
def training_weight(self, timestep):
"""
Input:
- timestep: the timestep with shape [B*T]
Output: the corresponding weighting [B*T]
"""
if timestep.ndim == 2:
timestep = timestep.flatten(0, 1)
self.linear_timesteps_weights = self.linear_timesteps_weights.to(timestep.device)
timestep_id = torch.argmin(
(self.timesteps.unsqueeze(1) - timestep.unsqueeze(0)).abs(), dim=0)
weights = self.linear_timesteps_weights[timestep_id]
return weights