self-forcing / model /base.py
multimodalart's picture
Upload 80 files
0fd2f06 verified
raw
history blame
10.7 kB
from typing import Tuple
from einops import rearrange
from torch import nn
import torch.distributed as dist
import torch
from pipeline import SelfForcingTrainingPipeline
from utils.loss import get_denoising_loss
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder, WanVAEWrapper
class BaseModel(nn.Module):
def __init__(self, args, device):
super().__init__()
self._initialize_models(args, device)
self.device = device
self.args = args
self.dtype = torch.bfloat16 if args.mixed_precision else torch.float32
if hasattr(args, "denoising_step_list"):
self.denoising_step_list = torch.tensor(args.denoising_step_list, dtype=torch.long)
if args.warp_denoising_step:
timesteps = torch.cat((self.scheduler.timesteps.cpu(), torch.tensor([0], dtype=torch.float32)))
self.denoising_step_list = timesteps[1000 - self.denoising_step_list]
def _initialize_models(self, args, device):
self.real_model_name = getattr(args, "real_name", "Wan2.1-T2V-1.3B")
self.fake_model_name = getattr(args, "fake_name", "Wan2.1-T2V-1.3B")
self.generator = WanDiffusionWrapper(**getattr(args, "model_kwargs", {}), is_causal=True)
self.generator.model.requires_grad_(True)
self.real_score = WanDiffusionWrapper(model_name=self.real_model_name, is_causal=False)
self.real_score.model.requires_grad_(False)
self.fake_score = WanDiffusionWrapper(model_name=self.fake_model_name, is_causal=False)
self.fake_score.model.requires_grad_(True)
self.text_encoder = WanTextEncoder()
self.text_encoder.requires_grad_(False)
self.vae = WanVAEWrapper()
self.vae.requires_grad_(False)
self.scheduler = self.generator.get_scheduler()
self.scheduler.timesteps = self.scheduler.timesteps.to(device)
def _get_timestep(
self,
min_timestep: int,
max_timestep: int,
batch_size: int,
num_frame: int,
num_frame_per_block: int,
uniform_timestep: bool = False
) -> torch.Tensor:
"""
Randomly generate a timestep tensor based on the generator's task type. It uniformly samples a timestep
from the range [min_timestep, max_timestep], and returns a tensor of shape [batch_size, num_frame].
- If uniform_timestep, it will use the same timestep for all frames.
- If not uniform_timestep, it will use a different timestep for each block.
"""
if uniform_timestep:
timestep = torch.randint(
min_timestep,
max_timestep,
[batch_size, 1],
device=self.device,
dtype=torch.long
).repeat(1, num_frame)
return timestep
else:
timestep = torch.randint(
min_timestep,
max_timestep,
[batch_size, num_frame],
device=self.device,
dtype=torch.long
)
# make the noise level the same within every block
if self.independent_first_frame:
# the first frame is always kept the same
timestep_from_second = timestep[:, 1:]
timestep_from_second = timestep_from_second.reshape(
timestep_from_second.shape[0], -1, num_frame_per_block)
timestep_from_second[:, :, 1:] = timestep_from_second[:, :, 0:1]
timestep_from_second = timestep_from_second.reshape(
timestep_from_second.shape[0], -1)
timestep = torch.cat([timestep[:, 0:1], timestep_from_second], dim=1)
else:
timestep = timestep.reshape(
timestep.shape[0], -1, num_frame_per_block)
timestep[:, :, 1:] = timestep[:, :, 0:1]
timestep = timestep.reshape(timestep.shape[0], -1)
return timestep
class SelfForcingModel(BaseModel):
def __init__(self, args, device):
super().__init__(args, device)
self.denoising_loss_func = get_denoising_loss(args.denoising_loss_type)()
def _run_generator(
self,
image_or_video_shape,
conditional_dict: dict,
initial_latent: torch.tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Optionally simulate the generator's input from noise using backward simulation
and then run the generator for one-step.
Input:
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W].
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings).
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used.
- initial_latent: a tensor containing the initial latents [B, F, C, H, W].
Output:
- pred_image: a tensor with shape [B, F, C, H, W].
- denoised_timestep: an integer
"""
# Step 1: Sample noise and backward simulate the generator's input
assert getattr(self.args, "backward_simulation", True), "Backward simulation needs to be enabled"
if initial_latent is not None:
conditional_dict["initial_latent"] = initial_latent
if self.args.i2v:
noise_shape = [image_or_video_shape[0], image_or_video_shape[1] - 1, *image_or_video_shape[2:]]
else:
noise_shape = image_or_video_shape.copy()
# During training, the number of generated frames should be uniformly sampled from
# [21, self.num_training_frames], but still being a multiple of self.num_frame_per_block
min_num_frames = 20 if self.args.independent_first_frame else 21
max_num_frames = self.num_training_frames - 1 if self.args.independent_first_frame else self.num_training_frames
assert max_num_frames % self.num_frame_per_block == 0
assert min_num_frames % self.num_frame_per_block == 0
max_num_blocks = max_num_frames // self.num_frame_per_block
min_num_blocks = min_num_frames // self.num_frame_per_block
num_generated_blocks = torch.randint(min_num_blocks, max_num_blocks + 1, (1,), device=self.device)
dist.broadcast(num_generated_blocks, src=0)
num_generated_blocks = num_generated_blocks.item()
num_generated_frames = num_generated_blocks * self.num_frame_per_block
if self.args.independent_first_frame and initial_latent is None:
num_generated_frames += 1
min_num_frames += 1
# Sync num_generated_frames across all processes
noise_shape[1] = num_generated_frames
pred_image_or_video, denoised_timestep_from, denoised_timestep_to = self._consistency_backward_simulation(
noise=torch.randn(noise_shape,
device=self.device, dtype=self.dtype),
**conditional_dict,
)
# Slice last 21 frames
if pred_image_or_video.shape[1] > 21:
with torch.no_grad():
# Reencode to get image latent
latent_to_decode = pred_image_or_video[:, :-20, ...]
# Deccode to video
pixels = self.vae.decode_to_pixel(latent_to_decode)
frame = pixels[:, -1:, ...].to(self.dtype)
frame = rearrange(frame, "b t c h w -> b c t h w")
# Encode frame to get image latent
image_latent = self.vae.encode_to_latent(frame).to(self.dtype)
pred_image_or_video_last_21 = torch.cat([image_latent, pred_image_or_video[:, -20:, ...]], dim=1)
else:
pred_image_or_video_last_21 = pred_image_or_video
if num_generated_frames != min_num_frames:
# Currently, we do not use gradient for the first chunk, since it contains image latents
gradient_mask = torch.ones_like(pred_image_or_video_last_21, dtype=torch.bool)
if self.args.independent_first_frame:
gradient_mask[:, :1] = False
else:
gradient_mask[:, :self.num_frame_per_block] = False
else:
gradient_mask = None
pred_image_or_video_last_21 = pred_image_or_video_last_21.to(self.dtype)
return pred_image_or_video_last_21, gradient_mask, denoised_timestep_from, denoised_timestep_to
def _consistency_backward_simulation(
self,
noise: torch.Tensor,
**conditional_dict: dict
) -> torch.Tensor:
"""
Simulate the generator's input from noise to avoid training/inference mismatch.
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details.
Here we use the consistency sampler (https://arxiv.org/abs/2303.01469)
Input:
- noise: a tensor sampled from N(0, 1) with shape [B, F, C, H, W] where the number of frame is 1 for images.
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings).
Output:
- output: a tensor with shape [B, T, F, C, H, W].
T is the total number of timesteps. output[0] is a pure noise and output[i] and i>0
represents the x0 prediction at each timestep.
"""
if self.inference_pipeline is None:
self._initialize_inference_pipeline()
return self.inference_pipeline.inference_with_trajectory(
noise=noise, **conditional_dict
)
def _initialize_inference_pipeline(self):
"""
Lazy initialize the inference pipeline during the first backward simulation run.
Here we encapsulate the inference code with a model-dependent outside function.
We pass our FSDP-wrapped modules into the pipeline to save memory.
"""
self.inference_pipeline = SelfForcingTrainingPipeline(
denoising_step_list=self.denoising_step_list,
scheduler=self.scheduler,
generator=self.generator,
num_frame_per_block=self.num_frame_per_block,
independent_first_frame=self.args.independent_first_frame,
same_step_across_blocks=self.args.same_step_across_blocks,
last_step_only=self.args.last_step_only,
num_max_frames=self.num_training_frames,
context_noise=self.args.context_noise
)