Spaces:
Running
on
Zero
Running
on
Zero
from pipeline import SelfForcingTrainingPipeline | |
import torch.nn.functional as F | |
from typing import Optional, Tuple | |
import torch | |
from model.base import SelfForcingModel | |
class DMD(SelfForcingModel): | |
def __init__(self, args, device): | |
""" | |
Initialize the DMD (Distribution Matching Distillation) module. | |
This class is self-contained and compute generator and fake score losses | |
in the forward pass. | |
""" | |
super().__init__(args, device) | |
self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) | |
self.same_step_across_blocks = getattr(args, "same_step_across_blocks", True) | |
self.num_training_frames = getattr(args, "num_training_frames", 21) | |
if self.num_frame_per_block > 1: | |
self.generator.model.num_frame_per_block = self.num_frame_per_block | |
self.independent_first_frame = getattr(args, "independent_first_frame", False) | |
if self.independent_first_frame: | |
self.generator.model.independent_first_frame = True | |
if args.gradient_checkpointing: | |
self.generator.enable_gradient_checkpointing() | |
self.fake_score.enable_gradient_checkpointing() | |
# this will be init later with fsdp-wrapped modules | |
self.inference_pipeline: SelfForcingTrainingPipeline = None | |
# Step 2: Initialize all dmd hyperparameters | |
self.num_train_timestep = args.num_train_timestep | |
self.min_step = int(0.02 * self.num_train_timestep) | |
self.max_step = int(0.98 * self.num_train_timestep) | |
if hasattr(args, "real_guidance_scale"): | |
self.real_guidance_scale = args.real_guidance_scale | |
self.fake_guidance_scale = args.fake_guidance_scale | |
else: | |
self.real_guidance_scale = args.guidance_scale | |
self.fake_guidance_scale = 0.0 | |
self.timestep_shift = getattr(args, "timestep_shift", 1.0) | |
self.ts_schedule = getattr(args, "ts_schedule", True) | |
self.ts_schedule_max = getattr(args, "ts_schedule_max", False) | |
self.min_score_timestep = getattr(args, "min_score_timestep", 0) | |
if getattr(self.scheduler, "alphas_cumprod", None) is not None: | |
self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device) | |
else: | |
self.scheduler.alphas_cumprod = None | |
def _compute_kl_grad( | |
self, noisy_image_or_video: torch.Tensor, | |
estimated_clean_image_or_video: torch.Tensor, | |
timestep: torch.Tensor, | |
conditional_dict: dict, unconditional_dict: dict, | |
normalization: bool = True | |
) -> Tuple[torch.Tensor, dict]: | |
""" | |
Compute the KL grad (eq 7 in https://arxiv.org/abs/2311.18828). | |
Input: | |
- noisy_image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images. | |
- estimated_clean_image_or_video: a tensor with shape [B, F, C, H, W] representing the estimated clean image or video. | |
- timestep: a tensor with shape [B, F] containing the randomly generated timestep. | |
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). | |
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). | |
- normalization: a boolean indicating whether to normalize the gradient. | |
Output: | |
- kl_grad: a tensor representing the KL grad. | |
- kl_log_dict: a dictionary containing the intermediate tensors for logging. | |
""" | |
# Step 1: Compute the fake score | |
_, pred_fake_image_cond = self.fake_score( | |
noisy_image_or_video=noisy_image_or_video, | |
conditional_dict=conditional_dict, | |
timestep=timestep | |
) | |
if self.fake_guidance_scale != 0.0: | |
_, pred_fake_image_uncond = self.fake_score( | |
noisy_image_or_video=noisy_image_or_video, | |
conditional_dict=unconditional_dict, | |
timestep=timestep | |
) | |
pred_fake_image = pred_fake_image_cond + ( | |
pred_fake_image_cond - pred_fake_image_uncond | |
) * self.fake_guidance_scale | |
else: | |
pred_fake_image = pred_fake_image_cond | |
# Step 2: Compute the real score | |
# We compute the conditional and unconditional prediction | |
# and add them together to achieve cfg (https://arxiv.org/abs/2207.12598) | |
_, pred_real_image_cond = self.real_score( | |
noisy_image_or_video=noisy_image_or_video, | |
conditional_dict=conditional_dict, | |
timestep=timestep | |
) | |
_, pred_real_image_uncond = self.real_score( | |
noisy_image_or_video=noisy_image_or_video, | |
conditional_dict=unconditional_dict, | |
timestep=timestep | |
) | |
pred_real_image = pred_real_image_cond + ( | |
pred_real_image_cond - pred_real_image_uncond | |
) * self.real_guidance_scale | |
# Step 3: Compute the DMD gradient (DMD paper eq. 7). | |
grad = (pred_fake_image - pred_real_image) | |
# TODO: Change the normalizer for causal teacher | |
if normalization: | |
# Step 4: Gradient normalization (DMD paper eq. 8). | |
p_real = (estimated_clean_image_or_video - pred_real_image) | |
normalizer = torch.abs(p_real).mean(dim=[1, 2, 3, 4], keepdim=True) | |
grad = grad / normalizer | |
grad = torch.nan_to_num(grad) | |
return grad, { | |
"dmdtrain_gradient_norm": torch.mean(torch.abs(grad)).detach(), | |
"timestep": timestep.detach() | |
} | |
def compute_distribution_matching_loss( | |
self, | |
image_or_video: torch.Tensor, | |
conditional_dict: dict, | |
unconditional_dict: dict, | |
gradient_mask: Optional[torch.Tensor] = None, | |
denoised_timestep_from: int = 0, | |
denoised_timestep_to: int = 0 | |
) -> Tuple[torch.Tensor, dict]: | |
""" | |
Compute the DMD loss (eq 7 in https://arxiv.org/abs/2311.18828). | |
Input: | |
- image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images. | |
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). | |
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). | |
- gradient_mask: a boolean tensor with the same shape as image_or_video indicating which pixels to compute loss . | |
Output: | |
- dmd_loss: a scalar tensor representing the DMD loss. | |
- dmd_log_dict: a dictionary containing the intermediate tensors for logging. | |
""" | |
original_latent = image_or_video | |
batch_size, num_frame = image_or_video.shape[:2] | |
with torch.no_grad(): | |
# Step 1: Randomly sample timestep based on the given schedule and corresponding noise | |
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep | |
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep | |
timestep = self._get_timestep( | |
min_timestep, | |
max_timestep, | |
batch_size, | |
num_frame, | |
self.num_frame_per_block, | |
uniform_timestep=True | |
) | |
# TODO:should we change it to `timestep = self.scheduler.timesteps[timestep]`? | |
if self.timestep_shift > 1: | |
timestep = self.timestep_shift * \ | |
(timestep / 1000) / \ | |
(1 + (self.timestep_shift - 1) * (timestep / 1000)) * 1000 | |
timestep = timestep.clamp(self.min_step, self.max_step) | |
noise = torch.randn_like(image_or_video) | |
noisy_latent = self.scheduler.add_noise( | |
image_or_video.flatten(0, 1), | |
noise.flatten(0, 1), | |
timestep.flatten(0, 1) | |
).detach().unflatten(0, (batch_size, num_frame)) | |
# Step 2: Compute the KL grad | |
grad, dmd_log_dict = self._compute_kl_grad( | |
noisy_image_or_video=noisy_latent, | |
estimated_clean_image_or_video=original_latent, | |
timestep=timestep, | |
conditional_dict=conditional_dict, | |
unconditional_dict=unconditional_dict | |
) | |
if gradient_mask is not None: | |
dmd_loss = 0.5 * F.mse_loss(original_latent.double( | |
)[gradient_mask], (original_latent.double() - grad.double()).detach()[gradient_mask], reduction="mean") | |
else: | |
dmd_loss = 0.5 * F.mse_loss(original_latent.double( | |
), (original_latent.double() - grad.double()).detach(), reduction="mean") | |
return dmd_loss, dmd_log_dict | |
def generator_loss( | |
self, | |
image_or_video_shape, | |
conditional_dict: dict, | |
unconditional_dict: dict, | |
clean_latent: torch.Tensor, | |
initial_latent: torch.Tensor = None | |
) -> Tuple[torch.Tensor, dict]: | |
""" | |
Generate image/videos from noise and compute the DMD loss. | |
The noisy input to the generator is backward simulated. | |
This removes the need of any datasets during distillation. | |
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. | |
Input: | |
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. | |
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). | |
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). | |
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. | |
Output: | |
- loss: a scalar tensor representing the generator loss. | |
- generator_log_dict: a dictionary containing the intermediate tensors for logging. | |
""" | |
# Step 1: Unroll generator to obtain fake videos | |
pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator( | |
image_or_video_shape=image_or_video_shape, | |
conditional_dict=conditional_dict, | |
initial_latent=initial_latent | |
) | |
# Step 2: Compute the DMD loss | |
dmd_loss, dmd_log_dict = self.compute_distribution_matching_loss( | |
image_or_video=pred_image, | |
conditional_dict=conditional_dict, | |
unconditional_dict=unconditional_dict, | |
gradient_mask=gradient_mask, | |
denoised_timestep_from=denoised_timestep_from, | |
denoised_timestep_to=denoised_timestep_to | |
) | |
return dmd_loss, dmd_log_dict | |
def critic_loss( | |
self, | |
image_or_video_shape, | |
conditional_dict: dict, | |
unconditional_dict: dict, | |
clean_latent: torch.Tensor, | |
initial_latent: torch.Tensor = None | |
) -> Tuple[torch.Tensor, dict]: | |
""" | |
Generate image/videos from noise and train the critic with generated samples. | |
The noisy input to the generator is backward simulated. | |
This removes the need of any datasets during distillation. | |
See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. | |
Input: | |
- image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. | |
- conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). | |
- unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). | |
- clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. | |
Output: | |
- loss: a scalar tensor representing the generator loss. | |
- critic_log_dict: a dictionary containing the intermediate tensors for logging. | |
""" | |
# Step 1: Run generator on backward simulated noisy input | |
with torch.no_grad(): | |
generated_image, _, denoised_timestep_from, denoised_timestep_to = self._run_generator( | |
image_or_video_shape=image_or_video_shape, | |
conditional_dict=conditional_dict, | |
initial_latent=initial_latent | |
) | |
# Step 2: Compute the fake prediction | |
min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep | |
max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep | |
critic_timestep = self._get_timestep( | |
min_timestep, | |
max_timestep, | |
image_or_video_shape[0], | |
image_or_video_shape[1], | |
self.num_frame_per_block, | |
uniform_timestep=True | |
) | |
if self.timestep_shift > 1: | |
critic_timestep = self.timestep_shift * \ | |
(critic_timestep / 1000) / (1 + (self.timestep_shift - 1) * (critic_timestep / 1000)) * 1000 | |
critic_timestep = critic_timestep.clamp(self.min_step, self.max_step) | |
critic_noise = torch.randn_like(generated_image) | |
noisy_generated_image = self.scheduler.add_noise( | |
generated_image.flatten(0, 1), | |
critic_noise.flatten(0, 1), | |
critic_timestep.flatten(0, 1) | |
).unflatten(0, image_or_video_shape[:2]) | |
_, pred_fake_image = self.fake_score( | |
noisy_image_or_video=noisy_generated_image, | |
conditional_dict=conditional_dict, | |
timestep=critic_timestep | |
) | |
# Step 3: Compute the denoising loss for the fake critic | |
if self.args.denoising_loss_type == "flow": | |
from utils.wan_wrapper import WanDiffusionWrapper | |
flow_pred = WanDiffusionWrapper._convert_x0_to_flow_pred( | |
scheduler=self.scheduler, | |
x0_pred=pred_fake_image.flatten(0, 1), | |
xt=noisy_generated_image.flatten(0, 1), | |
timestep=critic_timestep.flatten(0, 1) | |
) | |
pred_fake_noise = None | |
else: | |
flow_pred = None | |
pred_fake_noise = self.scheduler.convert_x0_to_noise( | |
x0=pred_fake_image.flatten(0, 1), | |
xt=noisy_generated_image.flatten(0, 1), | |
timestep=critic_timestep.flatten(0, 1) | |
).unflatten(0, image_or_video_shape[:2]) | |
denoising_loss = self.denoising_loss_func( | |
x=generated_image.flatten(0, 1), | |
x_pred=pred_fake_image.flatten(0, 1), | |
noise=critic_noise.flatten(0, 1), | |
noise_pred=pred_fake_noise, | |
alphas_cumprod=self.scheduler.alphas_cumprod, | |
timestep=critic_timestep.flatten(0, 1), | |
flow_pred=flow_pred | |
) | |
# Step 5: Debugging Log | |
critic_log_dict = { | |
"critic_timestep": critic_timestep.detach() | |
} | |
return denoising_loss, critic_log_dict | |