multimodalart's picture
Upload 80 files
0fd2f06 verified
from typing import List
from einops import rearrange
import tensorrt as trt
import torch
import torch.nn as nn
from demo_utils.constant import ALL_INPUTS_NAMES, ZERO_VAE_CACHE
from wan.modules.vae import AttentionBlock, CausalConv3d, RMS_norm, Upsample
CACHE_T = 2
class ResidualBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout=0.0):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# layers
self.residual = nn.Sequential(
RMS_norm(in_dim, images=False), nn.SiLU(),
CausalConv3d(in_dim, out_dim, 3, padding=1),
RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout),
CausalConv3d(out_dim, out_dim, 3, padding=1))
self.shortcut = CausalConv3d(in_dim, out_dim, 1) \
if in_dim != out_dim else nn.Identity()
def forward(self, x, feat_cache_1, feat_cache_2):
h = self.shortcut(x)
feat_cache = feat_cache_1
out_feat_cache = []
for layer in self.residual:
if isinstance(layer, CausalConv3d):
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache)
out_feat_cache.append(cache_x)
feat_cache = feat_cache_2
else:
x = layer(x)
return x + h, *out_feat_cache
class Resample(nn.Module):
def __init__(self, dim, mode):
assert mode in ('none', 'upsample2d', 'upsample3d')
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == 'upsample2d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest'),
nn.Conv2d(dim, dim // 2, 3, padding=1))
elif mode == 'upsample3d':
self.resample = nn.Sequential(
Upsample(scale_factor=(2., 2.), mode='nearest'),
nn.Conv2d(dim, dim // 2, 3, padding=1))
self.time_conv = CausalConv3d(
dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
else:
self.resample = nn.Identity()
def forward(self, x, is_first_frame, feat_cache):
if self.mode == 'upsample3d':
b, c, t, h, w = x.size()
# x, out_feat_cache = torch.cond(
# is_first_frame,
# lambda: (torch.cat([torch.zeros_like(x), x], dim=2), feat_cache.clone()),
# lambda: self.temporal_conv(x, feat_cache),
# )
# x, out_feat_cache = torch.cond(
# is_first_frame,
# lambda: (torch.cat([torch.zeros_like(x), x], dim=2), feat_cache.clone()),
# lambda: self.temporal_conv(x, feat_cache),
# )
x, out_feat_cache = self.temporal_conv(x, is_first_frame, feat_cache)
out_feat_cache = torch.cond(
is_first_frame,
lambda: feat_cache.clone().contiguous(),
lambda: out_feat_cache.clone().contiguous(),
)
# if is_first_frame:
# x = torch.cat([torch.zeros_like(x), x], dim=2)
# out_feat_cache = feat_cache.clone()
# else:
# x, out_feat_cache = self.temporal_conv(x, feat_cache)
else:
out_feat_cache = None
t = x.shape[2]
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = self.resample(x)
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
return x, out_feat_cache
def temporal_conv(self, x, is_first_frame, feat_cache):
b, c, t, h, w = x.size()
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache is not None:
cache_x = torch.cat([
torch.zeros_like(cache_x),
cache_x
], dim=2)
x = torch.cond(
is_first_frame,
lambda: torch.cat([torch.zeros_like(x), x], dim=1).contiguous(),
lambda: self.time_conv(x, feat_cache).contiguous(),
)
# x = self.time_conv(x, feat_cache)
out_feat_cache = cache_x
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]),
3)
x = x.reshape(b, c, t * 2, h, w)
return x.contiguous(), out_feat_cache.contiguous()
def init_weight(self, conv):
conv_weight = conv.weight
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
one_matrix = torch.eye(c1, c2)
init_matrix = one_matrix
nn.init.zeros_(conv_weight)
# conv_weight.data[:,:,-1,1,1] = init_matrix * 0.5
conv_weight.data[:, :, 1, 0, 0] = init_matrix # * 0.5
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
def init_weight2(self, conv):
conv_weight = conv.weight.data
nn.init.zeros_(conv_weight)
c1, c2, t, h, w = conv_weight.size()
init_matrix = torch.eye(c1 // 2, c2)
# init_matrix = repeat(init_matrix, 'o ... -> (o 2) ...').permute(1,0,2).contiguous().reshape(c1,c2)
conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix
conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix
conv.weight.data.copy_(conv_weight)
nn.init.zeros_(conv.bias.data)
class VAEDecoderWrapperSingle(nn.Module):
def __init__(self):
super().__init__()
self.decoder = VAEDecoder3d()
mean = [
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]
std = [
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]
self.mean = torch.tensor(mean, dtype=torch.float32)
self.std = torch.tensor(std, dtype=torch.float32)
self.z_dim = 16
self.conv2 = CausalConv3d(self.z_dim, self.z_dim, 1)
def forward(
self,
z: torch.Tensor,
is_first_frame: torch.Tensor,
*feat_cache: List[torch.Tensor]
):
# from [batch_size, num_frames, num_channels, height, width]
# to [batch_size, num_channels, num_frames, height, width]
z = z.permute(0, 2, 1, 3, 4)
assert z.shape[2] == 1
feat_cache = list(feat_cache)
is_first_frame = is_first_frame.bool()
device, dtype = z.device, z.dtype
scale = [self.mean.to(device=device, dtype=dtype),
1.0 / self.std.to(device=device, dtype=dtype)]
if isinstance(scale[0], torch.Tensor):
z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(
1, self.z_dim, 1, 1, 1)
else:
z = z / scale[1] + scale[0]
x = self.conv2(z)
out, feat_cache = self.decoder(x, is_first_frame, feat_cache=feat_cache)
out = out.clamp_(-1, 1)
# from [batch_size, num_channels, num_frames, height, width]
# to [batch_size, num_frames, num_channels, height, width]
out = out.permute(0, 2, 1, 3, 4)
return out, feat_cache
class VAEDecoder3d(nn.Module):
def __init__(self,
dim=96,
z_dim=16,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[True, True, False],
dropout=0.0):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
self.cache_t = 2
self.decoder_conv_num = 32
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2**(len(dim_mult) - 2)
# init block
self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.middle = nn.Sequential(
ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]),
ResidualBlock(dims[0], dims[0], dropout))
# upsample blocks
upsamples = []
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
if i == 1 or i == 2 or i == 3:
in_dim = in_dim // 2
for _ in range(num_res_blocks + 1):
upsamples.append(ResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
upsamples.append(AttentionBlock(out_dim))
in_dim = out_dim
# upsample block
if i != len(dim_mult) - 1:
mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d'
upsamples.append(Resample(out_dim, mode=mode))
scale *= 2.0
self.upsamples = nn.Sequential(*upsamples)
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, 3, 3, padding=1))
def forward(
self,
x: torch.Tensor,
is_first_frame: torch.Tensor,
feat_cache: List[torch.Tensor]
):
idx = 0
out_feat_cache = []
# conv1
cache_x = x[:, :, -self.cache_t:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = self.conv1(x, feat_cache[idx])
out_feat_cache.append(cache_x)
idx += 1
# middle
for layer in self.middle:
if isinstance(layer, ResidualBlock) and feat_cache is not None:
x, out_feat_cache_1, out_feat_cache_2 = layer(x, feat_cache[idx], feat_cache[idx + 1])
idx += 2
out_feat_cache.append(out_feat_cache_1)
out_feat_cache.append(out_feat_cache_2)
else:
x = layer(x)
# upsamples
for layer in self.upsamples:
if isinstance(layer, Resample):
x, cache_x = layer(x, is_first_frame, feat_cache[idx])
if cache_x is not None:
out_feat_cache.append(cache_x)
idx += 1
else:
x, out_feat_cache_1, out_feat_cache_2 = layer(x, feat_cache[idx], feat_cache[idx + 1])
idx += 2
out_feat_cache.append(out_feat_cache_1)
out_feat_cache.append(out_feat_cache_2)
# head
for layer in self.head:
if isinstance(layer, CausalConv3d) and feat_cache is not None:
cache_x = x[:, :, -self.cache_t:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([
feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(
cache_x.device), cache_x
],
dim=2)
x = layer(x, feat_cache[idx])
out_feat_cache.append(cache_x)
idx += 1
else:
x = layer(x)
return x, out_feat_cache
class VAETRTWrapper():
def __init__(self):
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with open("checkpoints/vae_decoder_int8.trt", "rb") as f, trt.Runtime(TRT_LOGGER) as rt:
self.engine: trt.ICudaEngine = rt.deserialize_cuda_engine(f.read())
self.context: trt.IExecutionContext = self.engine.create_execution_context()
self.stream = torch.cuda.current_stream().cuda_stream
# ──────────────────────────────
# 2️⃣ Feed the engine with tensors
# (name-based API in TRT β‰₯10)
# ──────────────────────────────
self.dtype_map = {
trt.float32: torch.float32,
trt.float16: torch.float16,
trt.int8: torch.int8,
trt.int32: torch.int32,
}
test_input = torch.zeros(1, 16, 1, 60, 104).cuda().half()
is_first_frame = torch.tensor(1.0).cuda().half()
test_cache_inputs = [c.cuda().half() for c in ZERO_VAE_CACHE]
test_inputs = [test_input, is_first_frame] + test_cache_inputs
# keep references so buffers stay alive
self.device_buffers, self.outputs = {}, []
# ---- inputs ----
for i, name in enumerate(ALL_INPUTS_NAMES):
tensor, scale = test_inputs[i], 1 / 127
tensor = self.quantize_if_needed(tensor, self.engine.get_tensor_dtype(name), scale)
# dynamic shapes
if -1 in self.engine.get_tensor_shape(name):
# new API :contentReference[oaicite:0]{index=0}
self.context.set_input_shape(name, tuple(tensor.shape))
# replaces bindings[] :contentReference[oaicite:1]{index=1}
self.context.set_tensor_address(name, int(tensor.data_ptr()))
self.device_buffers[name] = tensor # keep pointer alive
# ---- (after all input shapes are known) infer output shapes ----
# propagates shapes :contentReference[oaicite:2]{index=2}
self.context.infer_shapes()
for i in range(self.engine.num_io_tensors):
name = self.engine.get_tensor_name(i)
# replaces binding_is_input :contentReference[oaicite:3]{index=3}
if self.engine.get_tensor_mode(name) == trt.TensorIOMode.OUTPUT:
shape = tuple(self.context.get_tensor_shape(name))
dtype = self.dtype_map[self.engine.get_tensor_dtype(name)]
out = torch.empty(shape, dtype=dtype, device="cuda").contiguous()
self.context.set_tensor_address(name, int(out.data_ptr()))
self.outputs.append(out)
self.device_buffers[name] = out
# helper to quant-convert on the fly
def quantize_if_needed(self, t, expected_dtype, scale):
if expected_dtype == trt.int8 and t.dtype != torch.int8:
t = torch.clamp((t / scale).round(), -128, 127).to(torch.int8).contiguous()
return t # keep pointer alive
def forward(self, *test_inputs):
for i, name in enumerate(ALL_INPUTS_NAMES):
tensor, scale = test_inputs[i], 1 / 127
tensor = self.quantize_if_needed(tensor, self.engine.get_tensor_dtype(name), scale)
self.context.set_tensor_address(name, int(tensor.data_ptr()))
self.device_buffers[name] = tensor
self.context.execute_async_v3(stream_handle=self.stream)
torch.cuda.current_stream().synchronize()
return self.outputs