Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import random | |
import torch | |
def set_seed(seed: int, deterministic: bool = False): | |
""" | |
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`. | |
Args: | |
seed (`int`): | |
The seed to set. | |
deterministic (`bool`, *optional*, defaults to `False`): | |
Whether to use deterministic algorithms where available. Can slow down training. | |
""" | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
if deterministic: | |
torch.use_deterministic_algorithms(True) | |
def merge_dict_list(dict_list): | |
if len(dict_list) == 1: | |
return dict_list[0] | |
merged_dict = {} | |
for k, v in dict_list[0].items(): | |
if isinstance(v, torch.Tensor): | |
if v.ndim == 0: | |
merged_dict[k] = torch.stack([d[k] for d in dict_list], dim=0) | |
else: | |
merged_dict[k] = torch.cat([d[k] for d in dict_list], dim=0) | |
else: | |
# for non-tensor values, we just copy the value from the first item | |
merged_dict[k] = v | |
return merged_dict | |