self-forcing / utils /wan_wrapper.py
multimodalart's picture
Upload 80 files
0fd2f06 verified
import types
from typing import List, Optional
import torch
from torch import nn
from utils.scheduler import SchedulerInterface, FlowMatchScheduler
from wan.modules.tokenizers import HuggingfaceTokenizer
from wan.modules.model import WanModel, RegisterTokens, GanAttentionBlock
from wan.modules.vae import _video_vae
from wan.modules.t5 import umt5_xxl
from wan.modules.causal_model import CausalWanModel
class WanTextEncoder(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.text_encoder = umt5_xxl(
encoder_only=True,
return_tokenizer=False,
dtype=torch.float32,
device=torch.device('cpu')
).eval().requires_grad_(False)
self.text_encoder.load_state_dict(
torch.load("wan_models/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth",
map_location='cpu', weights_only=False)
)
self.tokenizer = HuggingfaceTokenizer(
name="wan_models/Wan2.1-T2V-1.3B/google/umt5-xxl/", seq_len=512, clean='whitespace')
@property
def device(self):
# Assume we are always on GPU
return torch.cuda.current_device()
def forward(self, text_prompts: List[str]) -> dict:
ids, mask = self.tokenizer(
text_prompts, return_mask=True, add_special_tokens=True)
ids = ids.to(self.device)
mask = mask.to(self.device)
seq_lens = mask.gt(0).sum(dim=1).long()
context = self.text_encoder(ids, mask)
for u, v in zip(context, seq_lens):
u[v:] = 0.0 # set padding to 0.0
return {
"prompt_embeds": context
}
class WanVAEWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
mean = [
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]
std = [
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]
self.mean = torch.tensor(mean, dtype=torch.float32)
self.std = torch.tensor(std, dtype=torch.float32)
# init model
self.model = _video_vae(
pretrained_path="wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth",
z_dim=16,
).eval().requires_grad_(False)
def encode_to_latent(self, pixel: torch.Tensor) -> torch.Tensor:
# pixel: [batch_size, num_channels, num_frames, height, width]
device, dtype = pixel.device, pixel.dtype
scale = [self.mean.to(device=device, dtype=dtype),
1.0 / self.std.to(device=device, dtype=dtype)]
output = [
self.model.encode(u.unsqueeze(0), scale).float().squeeze(0)
for u in pixel
]
output = torch.stack(output, dim=0)
# from [batch_size, num_channels, num_frames, height, width]
# to [batch_size, num_frames, num_channels, height, width]
output = output.permute(0, 2, 1, 3, 4)
return output
def decode_to_pixel(self, latent: torch.Tensor, use_cache: bool = False) -> torch.Tensor:
# from [batch_size, num_frames, num_channels, height, width]
# to [batch_size, num_channels, num_frames, height, width]
zs = latent.permute(0, 2, 1, 3, 4)
if use_cache:
assert latent.shape[0] == 1, "Batch size must be 1 when using cache"
device, dtype = latent.device, latent.dtype
scale = [self.mean.to(device=device, dtype=dtype),
1.0 / self.std.to(device=device, dtype=dtype)]
if use_cache:
decode_function = self.model.cached_decode
else:
decode_function = self.model.decode
output = []
for u in zs:
output.append(decode_function(u.unsqueeze(0), scale).float().clamp_(-1, 1).squeeze(0))
output = torch.stack(output, dim=0)
# from [batch_size, num_channels, num_frames, height, width]
# to [batch_size, num_frames, num_channels, height, width]
output = output.permute(0, 2, 1, 3, 4)
return output
class WanDiffusionWrapper(torch.nn.Module):
def __init__(
self,
model_name="Wan2.1-T2V-1.3B",
timestep_shift=8.0,
is_causal=False,
local_attn_size=-1,
sink_size=0
):
super().__init__()
if is_causal:
self.model = CausalWanModel.from_pretrained(
f"wan_models/{model_name}/", local_attn_size=local_attn_size, sink_size=sink_size)
else:
self.model = WanModel.from_pretrained(f"wan_models/{model_name}/")
self.model.eval()
# For non-causal diffusion, all frames share the same timestep
self.uniform_timestep = not is_causal
self.scheduler = FlowMatchScheduler(
shift=timestep_shift, sigma_min=0.0, extra_one_step=True
)
self.scheduler.set_timesteps(1000, training=True)
self.seq_len = 32760 # [1, 21, 16, 60, 104]
self.post_init()
def enable_gradient_checkpointing(self) -> None:
self.model.enable_gradient_checkpointing()
def adding_cls_branch(self, atten_dim=1536, num_class=4, time_embed_dim=0) -> None:
# NOTE: This is hard coded for WAN2.1-T2V-1.3B for now!!!!!!!!!!!!!!!!!!!!
self._cls_pred_branch = nn.Sequential(
# Input: [B, 384, 21, 60, 104]
nn.LayerNorm(atten_dim * 3 + time_embed_dim),
nn.Linear(atten_dim * 3 + time_embed_dim, 1536),
nn.SiLU(),
nn.Linear(atten_dim, num_class)
)
self._cls_pred_branch.requires_grad_(True)
num_registers = 3
self._register_tokens = RegisterTokens(num_registers=num_registers, dim=atten_dim)
self._register_tokens.requires_grad_(True)
gan_ca_blocks = []
for _ in range(num_registers):
block = GanAttentionBlock()
gan_ca_blocks.append(block)
self._gan_ca_blocks = nn.ModuleList(gan_ca_blocks)
self._gan_ca_blocks.requires_grad_(True)
# self.has_cls_branch = True
def _convert_flow_pred_to_x0(self, flow_pred: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
"""
Convert flow matching's prediction to x0 prediction.
flow_pred: the prediction with shape [B, C, H, W]
xt: the input noisy data with shape [B, C, H, W]
timestep: the timestep with shape [B]
pred = noise - x0
x_t = (1-sigma_t) * x0 + sigma_t * noise
we have x0 = x_t - sigma_t * pred
see derivations https://chatgpt.com/share/67bf8589-3d04-8008-bc6e-4cf1a24e2d0e
"""
# use higher precision for calculations
original_dtype = flow_pred.dtype
flow_pred, xt, sigmas, timesteps = map(
lambda x: x.double().to(flow_pred.device), [flow_pred, xt,
self.scheduler.sigmas,
self.scheduler.timesteps]
)
timestep_id = torch.argmin(
(timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
sigma_t = sigmas[timestep_id].reshape(-1, 1, 1, 1)
x0_pred = xt - sigma_t * flow_pred
return x0_pred.to(original_dtype)
@staticmethod
def _convert_x0_to_flow_pred(scheduler, x0_pred: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor:
"""
Convert x0 prediction to flow matching's prediction.
x0_pred: the x0 prediction with shape [B, C, H, W]
xt: the input noisy data with shape [B, C, H, W]
timestep: the timestep with shape [B]
pred = (x_t - x_0) / sigma_t
"""
# use higher precision for calculations
original_dtype = x0_pred.dtype
x0_pred, xt, sigmas, timesteps = map(
lambda x: x.double().to(x0_pred.device), [x0_pred, xt,
scheduler.sigmas,
scheduler.timesteps]
)
timestep_id = torch.argmin(
(timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
sigma_t = sigmas[timestep_id].reshape(-1, 1, 1, 1)
flow_pred = (xt - x0_pred) / sigma_t
return flow_pred.to(original_dtype)
def forward(
self,
noisy_image_or_video: torch.Tensor, conditional_dict: dict,
timestep: torch.Tensor, kv_cache: Optional[List[dict]] = None,
crossattn_cache: Optional[List[dict]] = None,
current_start: Optional[int] = None,
classify_mode: Optional[bool] = False,
concat_time_embeddings: Optional[bool] = False,
clean_x: Optional[torch.Tensor] = None,
aug_t: Optional[torch.Tensor] = None,
cache_start: Optional[int] = None
) -> torch.Tensor:
prompt_embeds = conditional_dict["prompt_embeds"]
# [B, F] -> [B]
if self.uniform_timestep:
input_timestep = timestep[:, 0]
else:
input_timestep = timestep
logits = None
# X0 prediction
if kv_cache is not None:
flow_pred = self.model(
noisy_image_or_video.permute(0, 2, 1, 3, 4),
t=input_timestep, context=prompt_embeds,
seq_len=self.seq_len,
kv_cache=kv_cache,
crossattn_cache=crossattn_cache,
current_start=current_start,
cache_start=cache_start
).permute(0, 2, 1, 3, 4)
else:
if clean_x is not None:
# teacher forcing
flow_pred = self.model(
noisy_image_or_video.permute(0, 2, 1, 3, 4),
t=input_timestep, context=prompt_embeds,
seq_len=self.seq_len,
clean_x=clean_x.permute(0, 2, 1, 3, 4),
aug_t=aug_t,
).permute(0, 2, 1, 3, 4)
else:
if classify_mode:
flow_pred, logits = self.model(
noisy_image_or_video.permute(0, 2, 1, 3, 4),
t=input_timestep, context=prompt_embeds,
seq_len=self.seq_len,
classify_mode=True,
register_tokens=self._register_tokens,
cls_pred_branch=self._cls_pred_branch,
gan_ca_blocks=self._gan_ca_blocks,
concat_time_embeddings=concat_time_embeddings
)
flow_pred = flow_pred.permute(0, 2, 1, 3, 4)
else:
flow_pred = self.model(
noisy_image_or_video.permute(0, 2, 1, 3, 4),
t=input_timestep, context=prompt_embeds,
seq_len=self.seq_len
).permute(0, 2, 1, 3, 4)
pred_x0 = self._convert_flow_pred_to_x0(
flow_pred=flow_pred.flatten(0, 1),
xt=noisy_image_or_video.flatten(0, 1),
timestep=timestep.flatten(0, 1)
).unflatten(0, flow_pred.shape[:2])
if logits is not None:
return flow_pred, pred_x0, logits
return flow_pred, pred_x0
def get_scheduler(self) -> SchedulerInterface:
"""
Update the current scheduler with the interface's static method
"""
scheduler = self.scheduler
scheduler.convert_x0_to_noise = types.MethodType(
SchedulerInterface.convert_x0_to_noise, scheduler)
scheduler.convert_noise_to_x0 = types.MethodType(
SchedulerInterface.convert_noise_to_x0, scheduler)
scheduler.convert_velocity_to_x0 = types.MethodType(
SchedulerInterface.convert_velocity_to_x0, scheduler)
self.scheduler = scheduler
return scheduler
def post_init(self):
"""
A few custom initialization steps that should be called after the object is created.
Currently, the only one we have is to bind a few methods to scheduler.
We can gradually add more methods here if needed.
"""
self.get_scheduler()