self-forcing / wan /modules /causal_model.py
multimodalart's picture
Update wan/modules/causal_model.py
6e7c357 verified
from wan.modules.attention import attention
from wan.modules.model import (
WanRMSNorm,
rope_apply,
WanLayerNorm,
WAN_CROSSATTENTION_CLASSES,
rope_params,
MLPProj,
sinusoidal_embedding_1d
)
from torch.nn.attention.flex_attention import create_block_mask, flex_attention
from diffusers.configuration_utils import ConfigMixin, register_to_config
from torch.nn.attention.flex_attention import BlockMask
from diffusers.models.modeling_utils import ModelMixin
import torch.nn as nn
import torch
import math
import torch.distributed as dist
# wan 1.3B model has a weird channel / head configurations and require max-autotune to work with flexattention
# see https://github.com/pytorch/pytorch/issues/133254
# change to default for other models
flex_attention = torch.compile(
flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs")
def causal_rope_apply(x, grid_sizes, freqs, start_frame=0):
n, c = x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
seq_len, n, -1, 2))
freqs_i = torch.cat([
freqs[0][start_frame:start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
],
dim=-1).reshape(seq_len, 1, -1)
# apply rotary embedding
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
x_i = torch.cat([x_i, x[i, seq_len:]])
# append to collection
output.append(x_i)
return torch.stack(output).type_as(x)
class CausalWanSelfAttention(nn.Module):
def __init__(self,
dim,
num_heads,
local_attn_size=-1,
sink_size=0,
qk_norm=True,
eps=1e-6):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.local_attn_size = local_attn_size
self.sink_size = sink_size
self.qk_norm = qk_norm
self.eps = eps
self.max_attention_size = 32760 if local_attn_size == -1 else local_attn_size * 1560
# layers
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(
self,
x,
seq_lens,
grid_sizes,
freqs,
block_mask,
kv_cache=None,
current_start=0,
cache_start=None
):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
seq_lens(Tensor): Shape [B]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
block_mask (BlockMask)
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
if cache_start is None:
cache_start = current_start
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
return q, k, v
q, k, v = qkv_fn(x)
if kv_cache is None:
# if it is teacher forcing training?
is_tf = (s == seq_lens[0].item() * 2)
if is_tf:
q_chunk = torch.chunk(q, 2, dim=1)
k_chunk = torch.chunk(k, 2, dim=1)
roped_query = []
roped_key = []
# rope should be same for clean and noisy parts
for ii in range(2):
rq = rope_apply(q_chunk[ii], grid_sizes, freqs).type_as(v)
rk = rope_apply(k_chunk[ii], grid_sizes, freqs).type_as(v)
roped_query.append(rq)
roped_key.append(rk)
roped_query = torch.cat(roped_query, dim=1)
roped_key = torch.cat(roped_key, dim=1)
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
padded_roped_query = torch.cat(
[roped_query,
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]],
device=q.device, dtype=v.dtype)],
dim=1
)
padded_roped_key = torch.cat(
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]],
device=k.device, dtype=v.dtype)],
dim=1
)
padded_v = torch.cat(
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]],
device=v.device, dtype=v.dtype)],
dim=1
)
x = flex_attention(
query=padded_roped_query.transpose(2, 1),
key=padded_roped_key.transpose(2, 1),
value=padded_v.transpose(2, 1),
block_mask=block_mask
)[:, :, :-padded_length].transpose(2, 1)
else:
roped_query = rope_apply(q, grid_sizes, freqs).type_as(v)
roped_key = rope_apply(k, grid_sizes, freqs).type_as(v)
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1]
padded_roped_query = torch.cat(
[roped_query,
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]],
device=q.device, dtype=v.dtype)],
dim=1
)
padded_roped_key = torch.cat(
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]],
device=k.device, dtype=v.dtype)],
dim=1
)
padded_v = torch.cat(
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]],
device=v.device, dtype=v.dtype)],
dim=1
)
x = flex_attention(
query=padded_roped_query.transpose(2, 1),
key=padded_roped_key.transpose(2, 1),
value=padded_v.transpose(2, 1),
block_mask=block_mask
)[:, :, :-padded_length].transpose(2, 1)
else:
frame_seqlen = math.prod(grid_sizes[0][1:]).item()
current_start_frame = current_start // frame_seqlen
roped_query = causal_rope_apply(
q, grid_sizes, freqs, start_frame=current_start_frame).type_as(v)
roped_key = causal_rope_apply(
k, grid_sizes, freqs, start_frame=current_start_frame).type_as(v)
current_end = current_start + roped_query.shape[1]
sink_tokens = self.sink_size * frame_seqlen
# If we are using local attention and the current KV cache size is larger than the local attention size, we need to truncate the KV cache
kv_cache_size = kv_cache["k"].shape[1]
num_new_tokens = roped_query.shape[1]
if self.local_attn_size != -1 and (current_end > kv_cache["global_end_index"].item()) and (
num_new_tokens + kv_cache["local_end_index"].item() > kv_cache_size):
# Calculate the number of new tokens added in this step
# Shift existing cache content left to discard oldest tokens
# Clone the source slice to avoid overlapping memory error
num_evicted_tokens = num_new_tokens + kv_cache["local_end_index"].item() - kv_cache_size
num_rolled_tokens = kv_cache["local_end_index"].item() - num_evicted_tokens - sink_tokens
kv_cache["k"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \
kv_cache["k"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone()
kv_cache["v"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \
kv_cache["v"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone()
# Insert the new keys/values at the end
local_end_index = kv_cache["local_end_index"].item() + current_end - \
kv_cache["global_end_index"].item() - num_evicted_tokens
local_start_index = local_end_index - num_new_tokens
kv_cache["k"][:, local_start_index:local_end_index] = roped_key
kv_cache["v"][:, local_start_index:local_end_index] = v
else:
# Assign new keys/values directly up to current_end
local_end_index = kv_cache["local_end_index"].item() + current_end - kv_cache["global_end_index"].item()
local_start_index = local_end_index - num_new_tokens
kv_cache["k"][:, local_start_index:local_end_index] = roped_key
kv_cache["v"][:, local_start_index:local_end_index] = v
x = attention(
roped_query,
kv_cache["k"][:, max(0, local_end_index - self.max_attention_size):local_end_index],
kv_cache["v"][:, max(0, local_end_index - self.max_attention_size):local_end_index]
)
kv_cache["global_end_index"].fill_(current_end)
kv_cache["local_end_index"].fill_(local_end_index)
# output
x = x.flatten(2)
x = x.to(self.o.weight.dtype)
x = self.o(x)
return x
class CausalWanAttentionBlock(nn.Module):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
local_attn_size=-1,
sink_size=0,
qk_norm=True,
cross_attn_norm=False,
eps=1e-6):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.local_attn_size = local_attn_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = CausalWanSelfAttention(dim, num_heads, local_attn_size, sink_size, qk_norm, eps)
self.norm3 = WanLayerNorm(
dim, eps,
elementwise_affine=True) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
num_heads,
(-1, -1),
qk_norm,
eps)
self.norm2 = WanLayerNorm(dim, eps)
self.ffn = nn.Sequential(
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
nn.Linear(ffn_dim, dim))
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def forward(
self,
x,
e,
seq_lens,
grid_sizes,
freqs,
context,
context_lens,
block_mask,
kv_cache=None,
crossattn_cache=None,
current_start=0,
cache_start=None
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, F, 6, C]
seq_lens(Tensor): Shape [B], length of each sequence in batch
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
# assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2)
# assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(
(self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0]).flatten(1, 2),
seq_lens, grid_sizes,
freqs, block_mask, kv_cache, current_start, cache_start)
# with amp.autocast(dtype=torch.float32):
x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * e[2]).flatten(1, 2)
# cross-attention & ffn function
def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None):
x = x + self.cross_attn(self.norm3(x), context,
context_lens, crossattn_cache=crossattn_cache)
y = self.ffn(
(self.norm2(x).unflatten(dim=1, sizes=(num_frames,
frame_seqlen)) * (1 + e[4]) + e[3]).flatten(1, 2)
)
# with amp.autocast(dtype=torch.float32):
x = x + (y.unflatten(dim=1, sizes=(num_frames,
frame_seqlen)) * e[5]).flatten(1, 2)
return x
x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache)
return x
class CausalHead(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_dim)
# modulation
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, F, 1, C]
"""
# assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1]
e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2)
x = (self.head(self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0]))
return x
class CausalWanModel(ModelMixin, ConfigMixin):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
ignore_for_config = [
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim'
]
_no_split_modules = ['WanAttentionBlock']
_supports_gradient_checkpointing = True
@register_to_config
def __init__(self,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
local_attn_size=-1,
sink_size=0,
qk_norm=True,
cross_attn_norm=True,
eps=1e-6):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
local_attn_size (`int`, *optional*, defaults to -1):
Window size for temporal local attention (-1 indicates global attention)
sink_size (`int`, *optional*, defaults to 0):
Size of the attention sink, we keep the first `sink_size` frames unchanged when rolling the KV cache
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
assert model_type in ['t2v', 'i2v']
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.local_attn_size = local_attn_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# embeddings
self.patch_embedding = nn.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
nn.Linear(dim, dim))
self.time_embedding = nn.Sequential(
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
self.time_projection = nn.Sequential(
nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
CausalWanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
local_attn_size, sink_size, qk_norm, cross_attn_norm, eps)
for _ in range(num_layers)
])
# head
self.head = CausalHead(dim, out_dim, patch_size, eps)
# buffers (don't use register_buffer otherwise dtype will be changed in to())
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads
self.freqs = torch.cat([
rope_params(1024, d - 4 * (d // 6)),
rope_params(1024, 2 * (d // 6)),
rope_params(1024, 2 * (d // 6))
],
dim=1)
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim)
# initialize weights
self.init_weights()
self.gradient_checkpointing = False
self.block_mask = None
self.num_frame_per_block = 1
self.independent_first_frame = False
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
@staticmethod
def _prepare_blockwise_causal_attn_mask(
device: torch.device | str, num_frames: int = 21,
frame_seqlen: int = 1560, num_frame_per_block=1, local_attn_size=-1
) -> BlockMask:
"""
we will divide the token sequence into the following format
[1 latent frame] [1 latent frame] ... [1 latent frame]
We use flexattention to construct the attention mask
"""
total_length = num_frames * frame_seqlen
# we do right padding to get to a multiple of 128
padded_length = math.ceil(total_length / 128) * 128 - total_length
ends = torch.zeros(total_length + padded_length,
device=device, dtype=torch.long)
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
frame_indices = torch.arange(
start=0,
end=total_length,
step=frame_seqlen * num_frame_per_block,
device=device
)
for tmp in frame_indices:
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \
frame_seqlen * num_frame_per_block
def attention_mask(b, h, q_idx, kv_idx):
if local_attn_size == -1:
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
else:
return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | (q_idx == kv_idx)
# return ((kv_idx < total_length) & (q_idx < total_length)) | (q_idx == kv_idx) # bidirectional mask
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
KV_LEN=total_length + padded_length, _compile=False, device=device)
import torch.distributed as dist
if not dist.is_initialized() or dist.get_rank() == 0:
print(
f" cache a block wise causal mask with block size of {num_frame_per_block} frames")
print(block_mask)
# import imageio
# import numpy as np
# from torch.nn.attention.flex_attention import create_mask
# mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length +
# padded_length, KV_LEN=total_length + padded_length, device=device)
# import cv2
# mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
# imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask))
return block_mask
@staticmethod
def _prepare_teacher_forcing_mask(
device: torch.device | str, num_frames: int = 21,
frame_seqlen: int = 1560, num_frame_per_block=1
) -> BlockMask:
"""
we will divide the token sequence into the following format
[1 latent frame] [1 latent frame] ... [1 latent frame]
We use flexattention to construct the attention mask
"""
# debug
DEBUG = False
if DEBUG:
num_frames = 9
frame_seqlen = 256
total_length = num_frames * frame_seqlen * 2
# we do right padding to get to a multiple of 128
padded_length = math.ceil(total_length / 128) * 128 - total_length
clean_ends = num_frames * frame_seqlen
# for clean context frames, we can construct their flex attention mask based on a [start, end] interval
context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
# for noisy frames, we need two intervals to construct the flex attention mask [context_start, context_end] [noisy_start, noisy_end]
noise_context_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
noise_context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
noise_noise_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
noise_noise_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
attention_block_size = frame_seqlen * num_frame_per_block
frame_indices = torch.arange(
start=0,
end=num_frames * frame_seqlen,
step=attention_block_size,
device=device, dtype=torch.long
)
# attention for clean context frames
for start in frame_indices:
context_ends[start:start + attention_block_size] = start + attention_block_size
noisy_image_start_list = torch.arange(
num_frames * frame_seqlen, total_length,
step=attention_block_size,
device=device, dtype=torch.long
)
noisy_image_end_list = noisy_image_start_list + attention_block_size
# attention for noisy frames
for block_index, (start, end) in enumerate(zip(noisy_image_start_list, noisy_image_end_list)):
# attend to noisy tokens within the same block
noise_noise_starts[start:end] = start
noise_noise_ends[start:end] = end
# attend to context tokens in previous blocks
# noise_context_starts[start:end] = 0
noise_context_ends[start:end] = block_index * attention_block_size
def attention_mask(b, h, q_idx, kv_idx):
# first design the mask for clean frames
clean_mask = (q_idx < clean_ends) & (kv_idx < context_ends[q_idx])
# then design the mask for noisy frames
# noisy frames will attend to all clean preceeding clean frames + itself
C1 = (kv_idx < noise_noise_ends[q_idx]) & (kv_idx >= noise_noise_starts[q_idx])
C2 = (kv_idx < noise_context_ends[q_idx]) & (kv_idx >= noise_context_starts[q_idx])
noise_mask = (q_idx >= clean_ends) & (C1 | C2)
eye_mask = q_idx == kv_idx
return eye_mask | clean_mask | noise_mask
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
KV_LEN=total_length + padded_length, _compile=False, device=device)
if DEBUG:
print(block_mask)
import imageio
import numpy as np
from torch.nn.attention.flex_attention import create_mask
mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length +
padded_length, KV_LEN=total_length + padded_length, device=device)
import cv2
mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask))
return block_mask
@staticmethod
def _prepare_blockwise_causal_attn_mask_i2v(
device: torch.device | str, num_frames: int = 21,
frame_seqlen: int = 1560, num_frame_per_block=4, local_attn_size=-1
) -> BlockMask:
"""
we will divide the token sequence into the following format
[1 latent frame] [N latent frame] ... [N latent frame]
The first frame is separated out to support I2V generation
We use flexattention to construct the attention mask
"""
total_length = num_frames * frame_seqlen
# we do right padding to get to a multiple of 128
padded_length = math.ceil(total_length / 128) * 128 - total_length
ends = torch.zeros(total_length + padded_length,
device=device, dtype=torch.long)
# special handling for the first frame
ends[:frame_seqlen] = frame_seqlen
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
frame_indices = torch.arange(
start=frame_seqlen,
end=total_length,
step=frame_seqlen * num_frame_per_block,
device=device
)
for idx, tmp in enumerate(frame_indices):
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \
frame_seqlen * num_frame_per_block
def attention_mask(b, h, q_idx, kv_idx):
if local_attn_size == -1:
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
else:
return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | \
(q_idx == kv_idx)
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length,
KV_LEN=total_length + padded_length, _compile=False, device=device)
if not dist.is_initialized() or dist.get_rank() == 0:
print(
f" cache a block wise causal mask with block size of {num_frame_per_block} frames")
print(block_mask)
# import imageio
# import numpy as np
# from torch.nn.attention.flex_attention import create_mask
# mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length +
# padded_length, KV_LEN=total_length + padded_length, device=device)
# import cv2
# mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024))
# imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask))
return block_mask
def _forward_inference(
self,
x,
t,
context,
seq_len,
clip_fea=None,
y=None,
kv_cache: dict = None,
crossattn_cache: dict = None,
current_start: int = 0,
cache_start: int = 0
):
r"""
Run the diffusion model with kv caching.
See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details.
This function will be run for num_frame times.
Process the latent frames one by one (1560 tokens each)
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat(x)
"""
torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
dim=1) for u in x
])
"""
# time embeddings
# with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x))
e0 = self.time_projection(e).unflatten(
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat(
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
block_mask=self.block_mask
)
def create_custom_forward(module):
def custom_forward(*inputs, **kwargs):
return module(*inputs, **kwargs)
return custom_forward
for block_index, block in enumerate(self.blocks):
if torch.is_grad_enabled() and self.gradient_checkpointing:
kwargs.update(
{
"kv_cache": kv_cache[block_index],
"current_start": current_start,
"cache_start": cache_start
}
)
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x, **kwargs,
use_reentrant=False,
)
else:
kwargs.update(
{
"kv_cache": kv_cache[block_index],
"crossattn_cache": crossattn_cache[block_index],
"current_start": current_start,
"cache_start": cache_start
}
)
x = block(x, **kwargs)
# head
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
# unpatchify
x = self.unpatchify(x, grid_sizes)
return torch.stack(x)
def _forward_train(
self,
x,
t,
context,
seq_len,
clean_x=None,
aug_t=None,
clip_fea=None,
y=None,
):
r"""
Forward pass through the diffusion model
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
# Construct blockwise causal attn mask
if self.block_mask is None:
if clean_x is not None:
if self.independent_first_frame:
raise NotImplementedError()
else:
self.block_mask = self._prepare_teacher_forcing_mask(
device, num_frames=x.shape[2],
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
num_frame_per_block=self.num_frame_per_block
)
else:
if self.independent_first_frame:
self.block_mask = self._prepare_blockwise_causal_attn_mask_i2v(
device, num_frames=x.shape[2],
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
num_frame_per_block=self.num_frame_per_block,
local_attn_size=self.local_attn_size
)
else:
self.block_mask = self._prepare_blockwise_causal_attn_mask(
device, num_frames=x.shape[2],
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]),
num_frame_per_block=self.num_frame_per_block,
local_attn_size=self.local_attn_size
)
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat([
torch.cat([u, u.new_zeros(1, seq_lens[0] - u.size(1), u.size(2))],
dim=1) for u in x
])
# time embeddings
# with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x))
e0 = self.time_projection(e).unflatten(
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat(
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
if clean_x is not None:
clean_x = [self.patch_embedding(u.unsqueeze(0)) for u in clean_x]
clean_x = [u.flatten(2).transpose(1, 2) for u in clean_x]
seq_lens_clean = torch.tensor([u.size(1) for u in clean_x], dtype=torch.long)
assert seq_lens_clean.max() <= seq_len
clean_x = torch.cat([
torch.cat([u, u.new_zeros(1, seq_lens_clean[0] - u.size(1), u.size(2))], dim=1) for u in clean_x
])
x = torch.cat([clean_x, x], dim=1)
if aug_t is None:
aug_t = torch.zeros_like(t)
e_clean = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, aug_t.flatten()).type_as(x))
e0_clean = self.time_projection(e_clean).unflatten(
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape)
e0 = torch.cat([e0_clean, e0], dim=1)
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
block_mask=self.block_mask)
def create_custom_forward(module):
def custom_forward(*inputs, **kwargs):
return module(*inputs, **kwargs)
return custom_forward
for block in self.blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x, **kwargs,
use_reentrant=False,
)
else:
x = block(x, **kwargs)
if clean_x is not None:
x = x[:, x.shape[1] // 2:]
# head
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2))
# unpatchify
x = self.unpatchify(x, grid_sizes)
return torch.stack(x)
def forward(
self,
*args,
**kwargs
):
if kwargs.get('kv_cache', None) is not None:
return self._forward_inference(*args, **kwargs)
else:
return self._forward_train(*args, **kwargs)
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
"""
c = self.out_dim
out = []
for u, v in zip(x, grid_sizes.tolist()):
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
u = torch.einsum('fhwpqrc->cfphqwr', u)
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
out.append(u)
return out
def init_weights(self):
r"""
Initialize model parameters using Xavier initialization.
"""
# basic init
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
# init embeddings
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
for m in self.text_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
for m in self.time_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
# init output layer
nn.init.zeros_(self.head.head.weight)