Spaces:
Running
on
Zero
Running
on
Zero
from wan.modules.attention import attention | |
from wan.modules.model import ( | |
WanRMSNorm, | |
rope_apply, | |
WanLayerNorm, | |
WAN_CROSSATTENTION_CLASSES, | |
rope_params, | |
MLPProj, | |
sinusoidal_embedding_1d | |
) | |
from torch.nn.attention.flex_attention import create_block_mask, flex_attention | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from torch.nn.attention.flex_attention import BlockMask | |
from diffusers.models.modeling_utils import ModelMixin | |
import torch.nn as nn | |
import torch | |
import math | |
import torch.distributed as dist | |
# wan 1.3B model has a weird channel / head configurations and require max-autotune to work with flexattention | |
# see https://github.com/pytorch/pytorch/issues/133254 | |
# change to default for other models | |
flex_attention = torch.compile( | |
flex_attention, dynamic=False, mode="max-autotune-no-cudagraphs") | |
def causal_rope_apply(x, grid_sizes, freqs, start_frame=0): | |
n, c = x.size(2), x.size(3) // 2 | |
# split freqs | |
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
# loop over samples | |
output = [] | |
for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
seq_len = f * h * w | |
# precompute multipliers | |
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( | |
seq_len, n, -1, 2)) | |
freqs_i = torch.cat([ | |
freqs[0][start_frame:start_frame + f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
], | |
dim=-1).reshape(seq_len, 1, -1) | |
# apply rotary embedding | |
x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
x_i = torch.cat([x_i, x[i, seq_len:]]) | |
# append to collection | |
output.append(x_i) | |
return torch.stack(output).type_as(x) | |
class CausalWanSelfAttention(nn.Module): | |
def __init__(self, | |
dim, | |
num_heads, | |
local_attn_size=-1, | |
sink_size=0, | |
qk_norm=True, | |
eps=1e-6): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.local_attn_size = local_attn_size | |
self.sink_size = sink_size | |
self.qk_norm = qk_norm | |
self.eps = eps | |
self.max_attention_size = 32760 if local_attn_size == -1 else local_attn_size * 1560 | |
# layers | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
self.o = nn.Linear(dim, dim) | |
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
def forward( | |
self, | |
x, | |
seq_lens, | |
grid_sizes, | |
freqs, | |
block_mask, | |
kv_cache=None, | |
current_start=0, | |
cache_start=None | |
): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
seq_lens(Tensor): Shape [B] | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
block_mask (BlockMask) | |
""" | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
if cache_start is None: | |
cache_start = current_start | |
# query, key, value function | |
def qkv_fn(x): | |
q = self.norm_q(self.q(x)).view(b, s, n, d) | |
k = self.norm_k(self.k(x)).view(b, s, n, d) | |
v = self.v(x).view(b, s, n, d) | |
return q, k, v | |
q, k, v = qkv_fn(x) | |
if kv_cache is None: | |
# if it is teacher forcing training? | |
is_tf = (s == seq_lens[0].item() * 2) | |
if is_tf: | |
q_chunk = torch.chunk(q, 2, dim=1) | |
k_chunk = torch.chunk(k, 2, dim=1) | |
roped_query = [] | |
roped_key = [] | |
# rope should be same for clean and noisy parts | |
for ii in range(2): | |
rq = rope_apply(q_chunk[ii], grid_sizes, freqs).type_as(v) | |
rk = rope_apply(k_chunk[ii], grid_sizes, freqs).type_as(v) | |
roped_query.append(rq) | |
roped_key.append(rk) | |
roped_query = torch.cat(roped_query, dim=1) | |
roped_key = torch.cat(roped_key, dim=1) | |
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1] | |
padded_roped_query = torch.cat( | |
[roped_query, | |
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]], | |
device=q.device, dtype=v.dtype)], | |
dim=1 | |
) | |
padded_roped_key = torch.cat( | |
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]], | |
device=k.device, dtype=v.dtype)], | |
dim=1 | |
) | |
padded_v = torch.cat( | |
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]], | |
device=v.device, dtype=v.dtype)], | |
dim=1 | |
) | |
x = flex_attention( | |
query=padded_roped_query.transpose(2, 1), | |
key=padded_roped_key.transpose(2, 1), | |
value=padded_v.transpose(2, 1), | |
block_mask=block_mask | |
)[:, :, :-padded_length].transpose(2, 1) | |
else: | |
roped_query = rope_apply(q, grid_sizes, freqs).type_as(v) | |
roped_key = rope_apply(k, grid_sizes, freqs).type_as(v) | |
padded_length = math.ceil(q.shape[1] / 128) * 128 - q.shape[1] | |
padded_roped_query = torch.cat( | |
[roped_query, | |
torch.zeros([q.shape[0], padded_length, q.shape[2], q.shape[3]], | |
device=q.device, dtype=v.dtype)], | |
dim=1 | |
) | |
padded_roped_key = torch.cat( | |
[roped_key, torch.zeros([k.shape[0], padded_length, k.shape[2], k.shape[3]], | |
device=k.device, dtype=v.dtype)], | |
dim=1 | |
) | |
padded_v = torch.cat( | |
[v, torch.zeros([v.shape[0], padded_length, v.shape[2], v.shape[3]], | |
device=v.device, dtype=v.dtype)], | |
dim=1 | |
) | |
x = flex_attention( | |
query=padded_roped_query.transpose(2, 1), | |
key=padded_roped_key.transpose(2, 1), | |
value=padded_v.transpose(2, 1), | |
block_mask=block_mask | |
)[:, :, :-padded_length].transpose(2, 1) | |
else: | |
frame_seqlen = math.prod(grid_sizes[0][1:]).item() | |
current_start_frame = current_start // frame_seqlen | |
roped_query = causal_rope_apply( | |
q, grid_sizes, freqs, start_frame=current_start_frame).type_as(v) | |
roped_key = causal_rope_apply( | |
k, grid_sizes, freqs, start_frame=current_start_frame).type_as(v) | |
current_end = current_start + roped_query.shape[1] | |
sink_tokens = self.sink_size * frame_seqlen | |
# If we are using local attention and the current KV cache size is larger than the local attention size, we need to truncate the KV cache | |
kv_cache_size = kv_cache["k"].shape[1] | |
num_new_tokens = roped_query.shape[1] | |
if self.local_attn_size != -1 and (current_end > kv_cache["global_end_index"].item()) and ( | |
num_new_tokens + kv_cache["local_end_index"].item() > kv_cache_size): | |
# Calculate the number of new tokens added in this step | |
# Shift existing cache content left to discard oldest tokens | |
# Clone the source slice to avoid overlapping memory error | |
num_evicted_tokens = num_new_tokens + kv_cache["local_end_index"].item() - kv_cache_size | |
num_rolled_tokens = kv_cache["local_end_index"].item() - num_evicted_tokens - sink_tokens | |
kv_cache["k"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \ | |
kv_cache["k"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone() | |
kv_cache["v"][:, sink_tokens:sink_tokens + num_rolled_tokens] = \ | |
kv_cache["v"][:, sink_tokens + num_evicted_tokens:sink_tokens + num_evicted_tokens + num_rolled_tokens].clone() | |
# Insert the new keys/values at the end | |
local_end_index = kv_cache["local_end_index"].item() + current_end - \ | |
kv_cache["global_end_index"].item() - num_evicted_tokens | |
local_start_index = local_end_index - num_new_tokens | |
kv_cache["k"][:, local_start_index:local_end_index] = roped_key | |
kv_cache["v"][:, local_start_index:local_end_index] = v | |
else: | |
# Assign new keys/values directly up to current_end | |
local_end_index = kv_cache["local_end_index"].item() + current_end - kv_cache["global_end_index"].item() | |
local_start_index = local_end_index - num_new_tokens | |
kv_cache["k"][:, local_start_index:local_end_index] = roped_key | |
kv_cache["v"][:, local_start_index:local_end_index] = v | |
x = attention( | |
roped_query, | |
kv_cache["k"][:, max(0, local_end_index - self.max_attention_size):local_end_index], | |
kv_cache["v"][:, max(0, local_end_index - self.max_attention_size):local_end_index] | |
) | |
kv_cache["global_end_index"].fill_(current_end) | |
kv_cache["local_end_index"].fill_(local_end_index) | |
# output | |
x = x.flatten(2) | |
x = x.to(self.o.weight.dtype) | |
x = self.o(x) | |
return x | |
class CausalWanAttentionBlock(nn.Module): | |
def __init__(self, | |
cross_attn_type, | |
dim, | |
ffn_dim, | |
num_heads, | |
local_attn_size=-1, | |
sink_size=0, | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6): | |
super().__init__() | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.num_heads = num_heads | |
self.local_attn_size = local_attn_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# layers | |
self.norm1 = WanLayerNorm(dim, eps) | |
self.self_attn = CausalWanSelfAttention(dim, num_heads, local_attn_size, sink_size, qk_norm, eps) | |
self.norm3 = WanLayerNorm( | |
dim, eps, | |
elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
num_heads, | |
(-1, -1), | |
qk_norm, | |
eps) | |
self.norm2 = WanLayerNorm(dim, eps) | |
self.ffn = nn.Sequential( | |
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
nn.Linear(ffn_dim, dim)) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
def forward( | |
self, | |
x, | |
e, | |
seq_lens, | |
grid_sizes, | |
freqs, | |
context, | |
context_lens, | |
block_mask, | |
kv_cache=None, | |
crossattn_cache=None, | |
current_start=0, | |
cache_start=None | |
): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
e(Tensor): Shape [B, F, 6, C] | |
seq_lens(Tensor): Shape [B], length of each sequence in batch | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1] | |
# assert e.dtype == torch.float32 | |
# with amp.autocast(dtype=torch.float32): | |
e = (self.modulation.unsqueeze(1) + e).chunk(6, dim=2) | |
# assert e[0].dtype == torch.float32 | |
# self-attention | |
y = self.self_attn( | |
(self.norm1(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0]).flatten(1, 2), | |
seq_lens, grid_sizes, | |
freqs, block_mask, kv_cache, current_start, cache_start) | |
# with amp.autocast(dtype=torch.float32): | |
x = x + (y.unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * e[2]).flatten(1, 2) | |
# cross-attention & ffn function | |
def cross_attn_ffn(x, context, context_lens, e, crossattn_cache=None): | |
x = x + self.cross_attn(self.norm3(x), context, | |
context_lens, crossattn_cache=crossattn_cache) | |
y = self.ffn( | |
(self.norm2(x).unflatten(dim=1, sizes=(num_frames, | |
frame_seqlen)) * (1 + e[4]) + e[3]).flatten(1, 2) | |
) | |
# with amp.autocast(dtype=torch.float32): | |
x = x + (y.unflatten(dim=1, sizes=(num_frames, | |
frame_seqlen)) * e[5]).flatten(1, 2) | |
return x | |
x = cross_attn_ffn(x, context, context_lens, e, crossattn_cache) | |
return x | |
class CausalHead(nn.Module): | |
def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
super().__init__() | |
self.dim = dim | |
self.out_dim = out_dim | |
self.patch_size = patch_size | |
self.eps = eps | |
# layers | |
out_dim = math.prod(patch_size) * out_dim | |
self.norm = WanLayerNorm(dim, eps) | |
self.head = nn.Linear(dim, out_dim) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
def forward(self, x, e): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
e(Tensor): Shape [B, F, 1, C] | |
""" | |
# assert e.dtype == torch.float32 | |
# with amp.autocast(dtype=torch.float32): | |
num_frames, frame_seqlen = e.shape[1], x.shape[1] // e.shape[1] | |
e = (self.modulation.unsqueeze(1) + e).chunk(2, dim=2) | |
x = (self.head(self.norm(x).unflatten(dim=1, sizes=(num_frames, frame_seqlen)) * (1 + e[1]) + e[0])) | |
return x | |
class CausalWanModel(ModelMixin, ConfigMixin): | |
r""" | |
Wan diffusion backbone supporting both text-to-video and image-to-video. | |
""" | |
ignore_for_config = [ | |
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim' | |
] | |
_no_split_modules = ['WanAttentionBlock'] | |
_supports_gradient_checkpointing = True | |
def __init__(self, | |
model_type='t2v', | |
patch_size=(1, 2, 2), | |
text_len=512, | |
in_dim=16, | |
dim=2048, | |
ffn_dim=8192, | |
freq_dim=256, | |
text_dim=4096, | |
out_dim=16, | |
num_heads=16, | |
num_layers=32, | |
local_attn_size=-1, | |
sink_size=0, | |
qk_norm=True, | |
cross_attn_norm=True, | |
eps=1e-6): | |
r""" | |
Initialize the diffusion model backbone. | |
Args: | |
model_type (`str`, *optional*, defaults to 't2v'): | |
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
text_len (`int`, *optional*, defaults to 512): | |
Fixed length for text embeddings | |
in_dim (`int`, *optional*, defaults to 16): | |
Input video channels (C_in) | |
dim (`int`, *optional*, defaults to 2048): | |
Hidden dimension of the transformer | |
ffn_dim (`int`, *optional*, defaults to 8192): | |
Intermediate dimension in feed-forward network | |
freq_dim (`int`, *optional*, defaults to 256): | |
Dimension for sinusoidal time embeddings | |
text_dim (`int`, *optional*, defaults to 4096): | |
Input dimension for text embeddings | |
out_dim (`int`, *optional*, defaults to 16): | |
Output video channels (C_out) | |
num_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads | |
num_layers (`int`, *optional*, defaults to 32): | |
Number of transformer blocks | |
local_attn_size (`int`, *optional*, defaults to -1): | |
Window size for temporal local attention (-1 indicates global attention) | |
sink_size (`int`, *optional*, defaults to 0): | |
Size of the attention sink, we keep the first `sink_size` frames unchanged when rolling the KV cache | |
qk_norm (`bool`, *optional*, defaults to True): | |
Enable query/key normalization | |
cross_attn_norm (`bool`, *optional*, defaults to False): | |
Enable cross-attention normalization | |
eps (`float`, *optional*, defaults to 1e-6): | |
Epsilon value for normalization layers | |
""" | |
super().__init__() | |
assert model_type in ['t2v', 'i2v'] | |
self.model_type = model_type | |
self.patch_size = patch_size | |
self.text_len = text_len | |
self.in_dim = in_dim | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.freq_dim = freq_dim | |
self.text_dim = text_dim | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.local_attn_size = local_attn_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# embeddings | |
self.patch_embedding = nn.Conv3d( | |
in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
self.text_embedding = nn.Sequential( | |
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
nn.Linear(dim, dim)) | |
self.time_embedding = nn.Sequential( | |
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
self.time_projection = nn.Sequential( | |
nn.SiLU(), nn.Linear(dim, dim * 6)) | |
# blocks | |
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
self.blocks = nn.ModuleList([ | |
CausalWanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
local_attn_size, sink_size, qk_norm, cross_attn_norm, eps) | |
for _ in range(num_layers) | |
]) | |
# head | |
self.head = CausalHead(dim, out_dim, patch_size, eps) | |
# buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
d = dim // num_heads | |
self.freqs = torch.cat([ | |
rope_params(1024, d - 4 * (d // 6)), | |
rope_params(1024, 2 * (d // 6)), | |
rope_params(1024, 2 * (d // 6)) | |
], | |
dim=1) | |
if model_type == 'i2v': | |
self.img_emb = MLPProj(1280, dim) | |
# initialize weights | |
self.init_weights() | |
self.gradient_checkpointing = False | |
self.block_mask = None | |
self.num_frame_per_block = 1 | |
self.independent_first_frame = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def _prepare_blockwise_causal_attn_mask( | |
device: torch.device | str, num_frames: int = 21, | |
frame_seqlen: int = 1560, num_frame_per_block=1, local_attn_size=-1 | |
) -> BlockMask: | |
""" | |
we will divide the token sequence into the following format | |
[1 latent frame] [1 latent frame] ... [1 latent frame] | |
We use flexattention to construct the attention mask | |
""" | |
total_length = num_frames * frame_seqlen | |
# we do right padding to get to a multiple of 128 | |
padded_length = math.ceil(total_length / 128) * 128 - total_length | |
ends = torch.zeros(total_length + padded_length, | |
device=device, dtype=torch.long) | |
# Block-wise causal mask will attend to all elements that are before the end of the current chunk | |
frame_indices = torch.arange( | |
start=0, | |
end=total_length, | |
step=frame_seqlen * num_frame_per_block, | |
device=device | |
) | |
for tmp in frame_indices: | |
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \ | |
frame_seqlen * num_frame_per_block | |
def attention_mask(b, h, q_idx, kv_idx): | |
if local_attn_size == -1: | |
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx) | |
else: | |
return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | (q_idx == kv_idx) | |
# return ((kv_idx < total_length) & (q_idx < total_length)) | (q_idx == kv_idx) # bidirectional mask | |
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, | |
KV_LEN=total_length + padded_length, _compile=False, device=device) | |
import torch.distributed as dist | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
print( | |
f" cache a block wise causal mask with block size of {num_frame_per_block} frames") | |
print(block_mask) | |
# import imageio | |
# import numpy as np | |
# from torch.nn.attention.flex_attention import create_mask | |
# mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length + | |
# padded_length, KV_LEN=total_length + padded_length, device=device) | |
# import cv2 | |
# mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024)) | |
# imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask)) | |
return block_mask | |
def _prepare_teacher_forcing_mask( | |
device: torch.device | str, num_frames: int = 21, | |
frame_seqlen: int = 1560, num_frame_per_block=1 | |
) -> BlockMask: | |
""" | |
we will divide the token sequence into the following format | |
[1 latent frame] [1 latent frame] ... [1 latent frame] | |
We use flexattention to construct the attention mask | |
""" | |
# debug | |
DEBUG = False | |
if DEBUG: | |
num_frames = 9 | |
frame_seqlen = 256 | |
total_length = num_frames * frame_seqlen * 2 | |
# we do right padding to get to a multiple of 128 | |
padded_length = math.ceil(total_length / 128) * 128 - total_length | |
clean_ends = num_frames * frame_seqlen | |
# for clean context frames, we can construct their flex attention mask based on a [start, end] interval | |
context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
# for noisy frames, we need two intervals to construct the flex attention mask [context_start, context_end] [noisy_start, noisy_end] | |
noise_context_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
noise_context_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
noise_noise_starts = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
noise_noise_ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
# Block-wise causal mask will attend to all elements that are before the end of the current chunk | |
attention_block_size = frame_seqlen * num_frame_per_block | |
frame_indices = torch.arange( | |
start=0, | |
end=num_frames * frame_seqlen, | |
step=attention_block_size, | |
device=device, dtype=torch.long | |
) | |
# attention for clean context frames | |
for start in frame_indices: | |
context_ends[start:start + attention_block_size] = start + attention_block_size | |
noisy_image_start_list = torch.arange( | |
num_frames * frame_seqlen, total_length, | |
step=attention_block_size, | |
device=device, dtype=torch.long | |
) | |
noisy_image_end_list = noisy_image_start_list + attention_block_size | |
# attention for noisy frames | |
for block_index, (start, end) in enumerate(zip(noisy_image_start_list, noisy_image_end_list)): | |
# attend to noisy tokens within the same block | |
noise_noise_starts[start:end] = start | |
noise_noise_ends[start:end] = end | |
# attend to context tokens in previous blocks | |
# noise_context_starts[start:end] = 0 | |
noise_context_ends[start:end] = block_index * attention_block_size | |
def attention_mask(b, h, q_idx, kv_idx): | |
# first design the mask for clean frames | |
clean_mask = (q_idx < clean_ends) & (kv_idx < context_ends[q_idx]) | |
# then design the mask for noisy frames | |
# noisy frames will attend to all clean preceeding clean frames + itself | |
C1 = (kv_idx < noise_noise_ends[q_idx]) & (kv_idx >= noise_noise_starts[q_idx]) | |
C2 = (kv_idx < noise_context_ends[q_idx]) & (kv_idx >= noise_context_starts[q_idx]) | |
noise_mask = (q_idx >= clean_ends) & (C1 | C2) | |
eye_mask = q_idx == kv_idx | |
return eye_mask | clean_mask | noise_mask | |
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, | |
KV_LEN=total_length + padded_length, _compile=False, device=device) | |
if DEBUG: | |
print(block_mask) | |
import imageio | |
import numpy as np | |
from torch.nn.attention.flex_attention import create_mask | |
mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length + | |
padded_length, KV_LEN=total_length + padded_length, device=device) | |
import cv2 | |
mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024)) | |
imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask)) | |
return block_mask | |
def _prepare_blockwise_causal_attn_mask_i2v( | |
device: torch.device | str, num_frames: int = 21, | |
frame_seqlen: int = 1560, num_frame_per_block=4, local_attn_size=-1 | |
) -> BlockMask: | |
""" | |
we will divide the token sequence into the following format | |
[1 latent frame] [N latent frame] ... [N latent frame] | |
The first frame is separated out to support I2V generation | |
We use flexattention to construct the attention mask | |
""" | |
total_length = num_frames * frame_seqlen | |
# we do right padding to get to a multiple of 128 | |
padded_length = math.ceil(total_length / 128) * 128 - total_length | |
ends = torch.zeros(total_length + padded_length, | |
device=device, dtype=torch.long) | |
# special handling for the first frame | |
ends[:frame_seqlen] = frame_seqlen | |
# Block-wise causal mask will attend to all elements that are before the end of the current chunk | |
frame_indices = torch.arange( | |
start=frame_seqlen, | |
end=total_length, | |
step=frame_seqlen * num_frame_per_block, | |
device=device | |
) | |
for idx, tmp in enumerate(frame_indices): | |
ends[tmp:tmp + frame_seqlen * num_frame_per_block] = tmp + \ | |
frame_seqlen * num_frame_per_block | |
def attention_mask(b, h, q_idx, kv_idx): | |
if local_attn_size == -1: | |
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx) | |
else: | |
return ((kv_idx < ends[q_idx]) & (kv_idx >= (ends[q_idx] - local_attn_size * frame_seqlen))) | \ | |
(q_idx == kv_idx) | |
block_mask = create_block_mask(attention_mask, B=None, H=None, Q_LEN=total_length + padded_length, | |
KV_LEN=total_length + padded_length, _compile=False, device=device) | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
print( | |
f" cache a block wise causal mask with block size of {num_frame_per_block} frames") | |
print(block_mask) | |
# import imageio | |
# import numpy as np | |
# from torch.nn.attention.flex_attention import create_mask | |
# mask = create_mask(attention_mask, B=None, H=None, Q_LEN=total_length + | |
# padded_length, KV_LEN=total_length + padded_length, device=device) | |
# import cv2 | |
# mask = cv2.resize(mask[0, 0].cpu().float().numpy(), (1024, 1024)) | |
# imageio.imwrite("mask_%d.jpg" % (0), np.uint8(255. * mask)) | |
return block_mask | |
def _forward_inference( | |
self, | |
x, | |
t, | |
context, | |
seq_len, | |
clip_fea=None, | |
y=None, | |
kv_cache: dict = None, | |
crossattn_cache: dict = None, | |
current_start: int = 0, | |
cache_start: int = 0 | |
): | |
r""" | |
Run the diffusion model with kv caching. | |
See Algorithm 2 of CausVid paper https://arxiv.org/abs/2412.07772 for details. | |
This function will be run for num_frame times. | |
Process the latent frames one by one (1560 tokens each) | |
Args: | |
x (List[Tensor]): | |
List of input video tensors, each with shape [C_in, F, H, W] | |
t (Tensor): | |
Diffusion timesteps tensor of shape [B] | |
context (List[Tensor]): | |
List of text embeddings each with shape [L, C] | |
seq_len (`int`): | |
Maximum sequence length for positional encoding | |
clip_fea (Tensor, *optional*): | |
CLIP image features for image-to-video mode | |
y (List[Tensor], *optional*): | |
Conditional video inputs for image-to-video mode, same shape as x | |
Returns: | |
List[Tensor]: | |
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
""" | |
if self.model_type == 'i2v': | |
assert clip_fea is not None and y is not None | |
# params | |
device = self.patch_embedding.weight.device | |
if self.freqs.device != device: | |
self.freqs = self.freqs.to(device) | |
if y is not None: | |
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
# embeddings | |
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
grid_sizes = torch.stack( | |
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
x = [u.flatten(2).transpose(1, 2) for u in x] | |
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
assert seq_lens.max() <= seq_len | |
x = torch.cat(x) | |
""" | |
torch.cat([ | |
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], | |
dim=1) for u in x | |
]) | |
""" | |
# time embeddings | |
# with amp.autocast(dtype=torch.float32): | |
e = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)) | |
e0 = self.time_projection(e).unflatten( | |
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) | |
# assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
# context | |
context_lens = None | |
context = self.text_embedding( | |
torch.stack([ | |
torch.cat( | |
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
for u in context | |
])) | |
if clip_fea is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = torch.concat([context_clip, context], dim=1) | |
# arguments | |
kwargs = dict( | |
e=e0, | |
seq_lens=seq_lens, | |
grid_sizes=grid_sizes, | |
freqs=self.freqs, | |
context=context, | |
context_lens=context_lens, | |
block_mask=self.block_mask | |
) | |
def create_custom_forward(module): | |
def custom_forward(*inputs, **kwargs): | |
return module(*inputs, **kwargs) | |
return custom_forward | |
for block_index, block in enumerate(self.blocks): | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
kwargs.update( | |
{ | |
"kv_cache": kv_cache[block_index], | |
"current_start": current_start, | |
"cache_start": cache_start | |
} | |
) | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
x, **kwargs, | |
use_reentrant=False, | |
) | |
else: | |
kwargs.update( | |
{ | |
"kv_cache": kv_cache[block_index], | |
"crossattn_cache": crossattn_cache[block_index], | |
"current_start": current_start, | |
"cache_start": cache_start | |
} | |
) | |
x = block(x, **kwargs) | |
# head | |
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2)) | |
# unpatchify | |
x = self.unpatchify(x, grid_sizes) | |
return torch.stack(x) | |
def _forward_train( | |
self, | |
x, | |
t, | |
context, | |
seq_len, | |
clean_x=None, | |
aug_t=None, | |
clip_fea=None, | |
y=None, | |
): | |
r""" | |
Forward pass through the diffusion model | |
Args: | |
x (List[Tensor]): | |
List of input video tensors, each with shape [C_in, F, H, W] | |
t (Tensor): | |
Diffusion timesteps tensor of shape [B] | |
context (List[Tensor]): | |
List of text embeddings each with shape [L, C] | |
seq_len (`int`): | |
Maximum sequence length for positional encoding | |
clip_fea (Tensor, *optional*): | |
CLIP image features for image-to-video mode | |
y (List[Tensor], *optional*): | |
Conditional video inputs for image-to-video mode, same shape as x | |
Returns: | |
List[Tensor]: | |
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
""" | |
if self.model_type == 'i2v': | |
assert clip_fea is not None and y is not None | |
# params | |
device = self.patch_embedding.weight.device | |
if self.freqs.device != device: | |
self.freqs = self.freqs.to(device) | |
# Construct blockwise causal attn mask | |
if self.block_mask is None: | |
if clean_x is not None: | |
if self.independent_first_frame: | |
raise NotImplementedError() | |
else: | |
self.block_mask = self._prepare_teacher_forcing_mask( | |
device, num_frames=x.shape[2], | |
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), | |
num_frame_per_block=self.num_frame_per_block | |
) | |
else: | |
if self.independent_first_frame: | |
self.block_mask = self._prepare_blockwise_causal_attn_mask_i2v( | |
device, num_frames=x.shape[2], | |
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), | |
num_frame_per_block=self.num_frame_per_block, | |
local_attn_size=self.local_attn_size | |
) | |
else: | |
self.block_mask = self._prepare_blockwise_causal_attn_mask( | |
device, num_frames=x.shape[2], | |
frame_seqlen=x.shape[-2] * x.shape[-1] // (self.patch_size[1] * self.patch_size[2]), | |
num_frame_per_block=self.num_frame_per_block, | |
local_attn_size=self.local_attn_size | |
) | |
if y is not None: | |
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
# embeddings | |
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
grid_sizes = torch.stack( | |
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
x = [u.flatten(2).transpose(1, 2) for u in x] | |
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
assert seq_lens.max() <= seq_len | |
x = torch.cat([ | |
torch.cat([u, u.new_zeros(1, seq_lens[0] - u.size(1), u.size(2))], | |
dim=1) for u in x | |
]) | |
# time embeddings | |
# with amp.autocast(dtype=torch.float32): | |
e = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).type_as(x)) | |
e0 = self.time_projection(e).unflatten( | |
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) | |
# assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
# context | |
context_lens = None | |
context = self.text_embedding( | |
torch.stack([ | |
torch.cat( | |
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
for u in context | |
])) | |
if clip_fea is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = torch.concat([context_clip, context], dim=1) | |
if clean_x is not None: | |
clean_x = [self.patch_embedding(u.unsqueeze(0)) for u in clean_x] | |
clean_x = [u.flatten(2).transpose(1, 2) for u in clean_x] | |
seq_lens_clean = torch.tensor([u.size(1) for u in clean_x], dtype=torch.long) | |
assert seq_lens_clean.max() <= seq_len | |
clean_x = torch.cat([ | |
torch.cat([u, u.new_zeros(1, seq_lens_clean[0] - u.size(1), u.size(2))], dim=1) for u in clean_x | |
]) | |
x = torch.cat([clean_x, x], dim=1) | |
if aug_t is None: | |
aug_t = torch.zeros_like(t) | |
e_clean = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, aug_t.flatten()).type_as(x)) | |
e0_clean = self.time_projection(e_clean).unflatten( | |
1, (6, self.dim)).unflatten(dim=0, sizes=t.shape) | |
e0 = torch.cat([e0_clean, e0], dim=1) | |
# arguments | |
kwargs = dict( | |
e=e0, | |
seq_lens=seq_lens, | |
grid_sizes=grid_sizes, | |
freqs=self.freqs, | |
context=context, | |
context_lens=context_lens, | |
block_mask=self.block_mask) | |
def create_custom_forward(module): | |
def custom_forward(*inputs, **kwargs): | |
return module(*inputs, **kwargs) | |
return custom_forward | |
for block in self.blocks: | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
x = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
x, **kwargs, | |
use_reentrant=False, | |
) | |
else: | |
x = block(x, **kwargs) | |
if clean_x is not None: | |
x = x[:, x.shape[1] // 2:] | |
# head | |
x = self.head(x, e.unflatten(dim=0, sizes=t.shape).unsqueeze(2)) | |
# unpatchify | |
x = self.unpatchify(x, grid_sizes) | |
return torch.stack(x) | |
def forward( | |
self, | |
*args, | |
**kwargs | |
): | |
if kwargs.get('kv_cache', None) is not None: | |
return self._forward_inference(*args, **kwargs) | |
else: | |
return self._forward_train(*args, **kwargs) | |
def unpatchify(self, x, grid_sizes): | |
r""" | |
Reconstruct video tensors from patch embeddings. | |
Args: | |
x (List[Tensor]): | |
List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
grid_sizes (Tensor): | |
Original spatial-temporal grid dimensions before patching, | |
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
Returns: | |
List[Tensor]: | |
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
""" | |
c = self.out_dim | |
out = [] | |
for u, v in zip(x, grid_sizes.tolist()): | |
u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
u = torch.einsum('fhwpqrc->cfphqwr', u) | |
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
out.append(u) | |
return out | |
def init_weights(self): | |
r""" | |
Initialize model parameters using Xavier initialization. | |
""" | |
# basic init | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
# init embeddings | |
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
for m in self.text_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=.02) | |
for m in self.time_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=.02) | |
# init output layer | |
nn.init.zeros_(self.head.head.weight) | |