Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -87,8 +87,6 @@ APP_STATE = {
|
|
87 |
}
|
88 |
|
89 |
def initialize_vae_decoder(use_taehv=False, use_trt=False):
|
90 |
-
global APP_STATE
|
91 |
-
|
92 |
if use_trt:
|
93 |
from demo_utils.vae import VAETRTWrapper
|
94 |
print("Initializing TensorRT VAE Decoder...")
|
@@ -138,6 +136,13 @@ def initialize_vae_decoder(use_taehv=False, use_trt=False):
|
|
138 |
# Initialize with default VAE
|
139 |
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# --- Additional Outputs Handler ---
|
142 |
def handle_additional_outputs(status_html_update, video_update, webrtc_output):
|
143 |
return status_html_update, video_update, webrtc_output
|
@@ -145,41 +150,17 @@ def handle_additional_outputs(status_html_update, video_update, webrtc_output):
|
|
145 |
# --- FastRTC Video Generation Handler ---
|
146 |
@torch.no_grad()
|
147 |
@spaces.GPU
|
148 |
-
def video_generation_handler(prompt, seed,
|
149 |
"""
|
150 |
Generator function that yields BGR NumPy frames for real-time streaming.
|
151 |
Returns cleanly when done - no infinite loops.
|
152 |
"""
|
153 |
-
global APP_STATE
|
154 |
|
155 |
if seed == -1:
|
156 |
seed = random.randint(0, 2**32 - 1)
|
157 |
|
158 |
print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}")
|
159 |
|
160 |
-
# --- Model & Pipeline Configuration ---
|
161 |
-
if use_taehv != APP_STATE["current_use_taehv"]:
|
162 |
-
print(f"🔄 Switching VAE to {'TAEHV' if use_taehv else 'Default VAE'}")
|
163 |
-
initialize_vae_decoder(use_taehv=use_taehv, use_trt=args.trt)
|
164 |
-
|
165 |
-
pipeline = CausalInferencePipeline(
|
166 |
-
config, device=gpu, generator=transformer, text_encoder=text_encoder,
|
167 |
-
vae=APP_STATE["current_vae_decoder"]
|
168 |
-
)
|
169 |
-
|
170 |
-
if enable_fp8 and not APP_STATE["fp8_applied"]:
|
171 |
-
print("⚡ Applying FP8 Quantization...")
|
172 |
-
from torchao.quantization.quant_api import quantize_, Float8DynamicActivationFloat8Weight, PerTensor
|
173 |
-
quantize_(pipeline.generator.model, Float8DynamicActivationFloat8Weight(granularity=PerTensor()))
|
174 |
-
APP_STATE["fp8_applied"] = True
|
175 |
-
|
176 |
-
if enable_torch_compile and not APP_STATE["torch_compile_applied"]:
|
177 |
-
print("🔥 Applying torch.compile (this may take a few minutes)...")
|
178 |
-
pipeline.generator.model = torch.compile(pipeline.generator.model, mode="max-autotune-no-cudagraphs")
|
179 |
-
if not use_taehv and not LOW_MEMORY and not args.trt:
|
180 |
-
pipeline.vae.decoder = torch.compile(pipeline.vae.decoder, mode="max-autotune-no-cudagraphs")
|
181 |
-
APP_STATE["torch_compile_applied"] = True
|
182 |
-
|
183 |
print("🔤 Encoding text prompt...")
|
184 |
conditional_dict = text_encoder(text_prompts=[prompt])
|
185 |
for key, value in conditional_dict.items():
|
@@ -187,14 +168,14 @@ def video_generation_handler(prompt, seed, enable_torch_compile, enable_fp8, use
|
|
187 |
|
188 |
# --- Generation Loop ---
|
189 |
rnd = torch.Generator(gpu).manual_seed(int(seed))
|
190 |
-
pipeline._initialize_kv_cache(1, torch.float16, gpu)
|
191 |
-
pipeline._initialize_crossattn_cache(1, torch.float16, gpu)
|
192 |
noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)
|
193 |
|
194 |
vae_cache, latents_cache = None, None
|
195 |
if not APP_STATE["current_use_taehv"] and not args.trt:
|
196 |
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]
|
197 |
-
|
198 |
num_blocks = 7
|
199 |
current_start_frame = 0
|
200 |
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
|
@@ -303,7 +284,6 @@ def video_generation_handler(prompt, seed, enable_torch_compile, enable_fp8, use
|
|
303 |
status_html = (
|
304 |
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
|
305 |
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
|
306 |
-
# Correctly implemented progress bar
|
307 |
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
|
308 |
f" <div style='width: {frame_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
|
309 |
f" </div>"
|
@@ -352,11 +332,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing FastRTC Demo") as dem
|
|
352 |
|
353 |
with gr.Accordion("⚙️ Performance Options", open=False):
|
354 |
gr.Markdown("*These optimizations are applied once per session*")
|
355 |
-
|
356 |
-
torch_compile_toggle = gr.Checkbox(label="🔥 torch.compile", value=False)
|
357 |
-
fp8_toggle = gr.Checkbox(label="⚡ FP8 Quantization", value=False, visible=not args.trt)
|
358 |
-
taehv_toggle = gr.Checkbox(label="⚡ TAEHV VAE", value=False, visible=not args.trt)
|
359 |
-
|
360 |
start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg")
|
361 |
|
362 |
with gr.Column(scale=3):
|
@@ -385,7 +361,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing FastRTC Demo") as dem
|
|
385 |
# Connect the generator to the WebRTC stream
|
386 |
webrtc_output.stream(
|
387 |
fn=video_generation_handler,
|
388 |
-
inputs=[prompt, seed
|
389 |
outputs=[webrtc_output],
|
390 |
time_limit=300, # 5 minutes max
|
391 |
trigger=start_btn.click,
|
|
|
87 |
}
|
88 |
|
89 |
def initialize_vae_decoder(use_taehv=False, use_trt=False):
|
|
|
|
|
90 |
if use_trt:
|
91 |
from demo_utils.vae import VAETRTWrapper
|
92 |
print("Initializing TensorRT VAE Decoder...")
|
|
|
136 |
# Initialize with default VAE
|
137 |
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
|
138 |
|
139 |
+
pipeline = CausalInferencePipeline(
|
140 |
+
config, device=gpu, generator=transformer, text_encoder=text_encoder,
|
141 |
+
vae=APP_STATE["current_vae_decoder"]
|
142 |
+
)
|
143 |
+
|
144 |
+
pipeline.to(gpu)
|
145 |
+
|
146 |
# --- Additional Outputs Handler ---
|
147 |
def handle_additional_outputs(status_html_update, video_update, webrtc_output):
|
148 |
return status_html_update, video_update, webrtc_output
|
|
|
150 |
# --- FastRTC Video Generation Handler ---
|
151 |
@torch.no_grad()
|
152 |
@spaces.GPU
|
153 |
+
def video_generation_handler(prompt, seed, progress=gr.Progress()):
|
154 |
"""
|
155 |
Generator function that yields BGR NumPy frames for real-time streaming.
|
156 |
Returns cleanly when done - no infinite loops.
|
157 |
"""
|
|
|
158 |
|
159 |
if seed == -1:
|
160 |
seed = random.randint(0, 2**32 - 1)
|
161 |
|
162 |
print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}")
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
print("🔤 Encoding text prompt...")
|
165 |
conditional_dict = text_encoder(text_prompts=[prompt])
|
166 |
for key, value in conditional_dict.items():
|
|
|
168 |
|
169 |
# --- Generation Loop ---
|
170 |
rnd = torch.Generator(gpu).manual_seed(int(seed))
|
171 |
+
pipeline._initialize_kv_cache(1, torch.float16, device=gpu)
|
172 |
+
pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu)
|
173 |
noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)
|
174 |
|
175 |
vae_cache, latents_cache = None, None
|
176 |
if not APP_STATE["current_use_taehv"] and not args.trt:
|
177 |
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]
|
178 |
+
|
179 |
num_blocks = 7
|
180 |
current_start_frame = 0
|
181 |
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
|
|
|
284 |
status_html = (
|
285 |
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
|
286 |
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
|
|
|
287 |
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
|
288 |
f" <div style='width: {frame_progress:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
|
289 |
f" </div>"
|
|
|
332 |
|
333 |
with gr.Accordion("⚙️ Performance Options", open=False):
|
334 |
gr.Markdown("*These optimizations are applied once per session*")
|
335 |
+
|
|
|
|
|
|
|
|
|
336 |
start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg")
|
337 |
|
338 |
with gr.Column(scale=3):
|
|
|
361 |
# Connect the generator to the WebRTC stream
|
362 |
webrtc_output.stream(
|
363 |
fn=video_generation_handler,
|
364 |
+
inputs=[prompt, seed],
|
365 |
outputs=[webrtc_output],
|
366 |
time_limit=300, # 5 minutes max
|
367 |
trigger=start_btn.click,
|