import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) from huggingface_hub import snapshot_download, hf_hub_download snapshot_download( repo_id="Wan-AI/Wan2.1-T2V-1.3B", local_dir="wan_models/Wan2.1-T2V-1.3B", local_dir_use_symlinks=False, resume_download=True, repo_type="model" ) hf_hub_download( repo_id="gdhe17/Self-Forcing", filename="checkpoints/self_forcing_dmd.pt", local_dir=".", local_dir_use_symlinks=False ) import os import re import random import argparse import hashlib import urllib.request import time from PIL import Image import spaces import numpy as np import torch import gradio as gr from omegaconf import OmegaConf from tqdm import tqdm import imageio # Original project imports from pipeline import CausalInferencePipeline from demo_utils.constant import ZERO_VAE_CACHE from demo_utils.vae_block3 import VAEDecoderWrapper from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder # --- Argument Parsing --- parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming") parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.") parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.") parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.") parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.") parser.add_argument('--share', action='store_true', help="Create a public Gradio link.") parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.") parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.") args = parser.parse_args() gpu = "cuda" try: config = OmegaConf.load(args.config_path) default_config = OmegaConf.load("configs/default_config.yaml") config = OmegaConf.merge(default_config, config) except FileNotFoundError as e: print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.") exit(1) # Initialize Models print("Initializing models...") text_encoder = WanTextEncoder() transformer = WanDiffusionWrapper(is_causal=True) try: state_dict = torch.load(args.checkpoint_path, map_location="cpu") transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator'))) except FileNotFoundError as e: print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.") exit(1) text_encoder.eval().to(dtype=torch.float16).requires_grad_(False) transformer.eval().to(dtype=torch.float16).requires_grad_(False) text_encoder.to(gpu) transformer.to(gpu) APP_STATE = { "torch_compile_applied": False, "fp8_applied": False, "current_use_taehv": False, "current_vae_decoder": None, } def initialize_vae_decoder(use_taehv=False, use_trt=False): if use_trt: from demo_utils.vae import VAETRTWrapper print("Initializing TensorRT VAE Decoder...") vae_decoder = VAETRTWrapper() APP_STATE["current_use_taehv"] = False elif use_taehv: print("Initializing TAEHV VAE Decoder...") from demo_utils.taehv import TAEHV taehv_checkpoint_path = "checkpoints/taew2_1.pth" if not os.path.exists(taehv_checkpoint_path): print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...") os.makedirs("checkpoints", exist_ok=True) download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth" try: urllib.request.urlretrieve(download_url, taehv_checkpoint_path) except Exception as e: raise RuntimeError(f"Failed to download taew2_1.pth: {e}") class DotDict(dict): __getattr__ = dict.get class TAEHVDiffusersWrapper(torch.nn.Module): def __init__(self): super().__init__() self.dtype = torch.float16 self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype) self.config = DotDict(scaling_factor=1.0) def decode(self, latents, return_dict=None): return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1) vae_decoder = TAEHVDiffusersWrapper() APP_STATE["current_use_taehv"] = True else: print("Initializing Default VAE Decoder...") vae_decoder = VAEDecoderWrapper() try: vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu") decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k} vae_decoder.load_state_dict(decoder_state_dict) except FileNotFoundError: print("Warning: Default VAE weights not found.") APP_STATE["current_use_taehv"] = False vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu) APP_STATE["current_vae_decoder"] = vae_decoder print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}") # Initialize with default VAE initialize_vae_decoder(use_taehv=False, use_trt=args.trt) pipeline = CausalInferencePipeline( config, device=gpu, generator=transformer, text_encoder=text_encoder, vae=APP_STATE["current_vae_decoder"] ) pipeline.to(dtype=torch.float16).to(gpu) # --- Frame Streaming Video Generation Handler --- @torch.no_grad() @spaces.GPU def video_generation_handler(prompt, seed, fps): """ Generator function that yields RGB frames for display in gr.Image. Includes timing delays for smooth playback. """ if seed == -1: seed = random.randint(0, 2**32 - 1) print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}") # Calculate frame delay based on FPS frame_delay = 1.0 / fps if fps > 0 else 1.0 / 15.0 print("🔤 Encoding text prompt...") conditional_dict = text_encoder(text_prompts=[prompt]) for key, value in conditional_dict.items(): conditional_dict[key] = value.to(dtype=torch.float16) # --- Generation Loop --- rnd = torch.Generator(gpu).manual_seed(int(seed)) pipeline._initialize_kv_cache(1, torch.float16, device=gpu) pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu) noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd) vae_cache, latents_cache = None, None if not APP_STATE["current_use_taehv"] and not args.trt: vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE] num_blocks = 7 current_start_frame = 0 all_num_frames = [pipeline.num_frame_per_block] * num_blocks total_frames_yielded = 0 all_frames_for_video = [] for idx, current_num_frames in enumerate(all_num_frames): print(f"📦 Processing block {idx+1}/{num_blocks} with {current_num_frames} frames") noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames] for step_idx, current_timestep in enumerate(pipeline.denoising_step_list): timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep _, denoised_pred = pipeline.generator( noisy_image_or_video=noisy_input, conditional_dict=conditional_dict, timestep=timestep, kv_cache=pipeline.kv_cache1, crossattn_cache=pipeline.crossattn_cache, current_start=current_start_frame * pipeline.frame_seq_length ) if step_idx < len(pipeline.denoising_step_list) - 1: next_timestep = pipeline.denoising_step_list[step_idx + 1] noisy_input = pipeline.scheduler.add_noise( denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)), next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long) ).unflatten(0, denoised_pred.shape[:2]) if idx < len(all_num_frames) - 1: pipeline.generator( noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict, timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1, crossattn_cache=pipeline.crossattn_cache, current_start=current_start_frame * pipeline.frame_seq_length, ) # Decode to pixels if args.trt: pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache) elif APP_STATE["current_use_taehv"]: if latents_cache is None: latents_cache = denoised_pred else: denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1) latents_cache = denoised_pred[:, -3:] pixels = pipeline.vae.decode(denoised_pred) else: pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache) # Handle frame skipping for first block if idx == 0 and not args.trt: pixels = pixels[:, 3:] elif APP_STATE["current_use_taehv"] and idx > 0: pixels = pixels[:, 12:] print(f"📹 Decoded pixels shape: {pixels.shape}") # Calculate actual frames that will be yielded for this block actual_frames_this_block = pixels.shape[1] # Yield individual frames with timing delays for frame_idx in range(actual_frames_this_block): frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W] # Normalize from [-1, 1] to [0, 255] frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5 frame_np = frame_np.to(torch.uint8).cpu().numpy() # Convert from CHW to HWC format (RGB) frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC all_frames_for_video.append(frame_np) total_frames_yielded += 1 # Calculate progress based on blocks completed + current block progress blocks_completed = idx current_block_progress = (frame_idx + 1) / actual_frames_this_block total_block_progress = (blocks_completed + current_block_progress) / num_blocks frame_progress_percent = total_block_progress * 100 # Cap at 100% to avoid going over frame_progress_percent = min(frame_progress_percent, 100.0) print(f"📺 Yielding frame {total_frames_yielded}: shape {frame_np.shape}") # Create HTML status update if frame_idx == actual_frames_this_block - 1 and idx + 1 == num_blocks: # Last frame status_html = ( f"
" f"

🎉 Generation Complete!

" f"

" f" Total frames: {total_frames_yielded}. The final video is now available." f"

" f"
" ) else: # Regular frames status_html = ( f"
" f"

Generating Video...

" f"
" f"
" f"
" f"

" f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {frame_progress_percent:.1f}%" f"

" f"
" ) # Yield frame with a small delay to ensure UI updates yield gr.update(visible=True, value=frame_np), gr.update(visible=False), status_html # Sleep between frames for smooth playback (except for the last frame) # Add minimum delay to ensure UI can update if not (frame_idx == actual_frames_this_block - 1 and idx + 1 == num_blocks): time.sleep(max(frame_delay, 0.1)) # Minimum 100ms delay current_start_frame += current_num_frames print(f"✅ Video generation completed! Total frames yielded: {total_frames_yielded}") # Save final video try: video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4" imageio.mimwrite(video_path, all_frames_for_video, fps=fps, quality=8) print(f"✅ Video saved to {video_path}") final_status_html = ( f"
" f"

🎉 Generation Complete!

" f"

" f" Video saved successfully with {total_frames_yielded} frames at {fps} FPS." f"

" f"
" ) yield gr.update(visible=False), gr.update(value=video_path, visible=True), final_status_html except Exception as e: print(f"⚠️ Could not save final video: {e}") error_status_html = ( f"
" f"

⚠️ Video Save Error

" f"

" f" Could not save final video: {str(e)}" f"

" f"
" ) yield None, None, error_status_html # --- Gradio UI Layout --- with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing Frame Streaming Demo") as demo: gr.Markdown("# 🚀 Self-Forcing Video Generation with Frame Streaming") gr.Markdown("*Real-time video generation with frame-by-frame display*") with gr.Row(): with gr.Column(scale=2): gr.Markdown("### 📝 Configure Generation") with gr.Group(): prompt = gr.Textbox( label="Prompt", placeholder="A stylish woman walks down a Tokyo street...", lines=4, value="A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage." ) gr.Examples( examples=[ "A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse.", "A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something. Its eyes are wide and happy as it jogs forward, scanning the branches, flowers, and leaves.", "A drone shot of a surfer riding a wave on a sunny day. The camera follows the surfer as they carve through the water.", ], inputs=[prompt] ) with gr.Row(): seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.") fps = gr.Slider( label="Playback FPS", minimum=1, maximum=30, value=args.fps, step=1, info="Frames per second for playback" ) start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg") with gr.Column(scale=3): gr.Markdown("### 📺 Live Frame Stream") gr.Markdown("*Click 'Start Generation' to begin frame streaming*") frame_display = gr.Image( label="Generated Frames", height=480, width=832, show_label=True, container=True ) final_video = gr.Video( label="Final Rendered Video", visible=False, interactive=False, height=400, autoplay=True ) status_html = gr.HTML( value="
Ready to start generation...
", label="Generation Status" ) # Connect the generator to the image display start_btn.click( fn=video_generation_handler, inputs=[prompt, seed, fps], outputs=[frame_display, final_video, status_html] ) # --- Launch App --- if __name__ == "__main__": if os.path.exists("gradio_tmp"): import shutil shutil.rmtree("gradio_tmp") os.makedirs("gradio_tmp", exist_ok=True) demo.queue().launch( server_name=args.host, server_port=args.port, share=args.share, show_error=True )