from utils.distributed import launch_distributed_job from utils.scheduler import FlowMatchScheduler from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder from utils.dataset import TextDataset import torch.distributed as dist from tqdm import tqdm import argparse import torch import math import os def init_model(device): model = WanDiffusionWrapper().to(device).to(torch.float32) encoder = WanTextEncoder().to(device).to(torch.float32) model.model.requires_grad_(False) scheduler = FlowMatchScheduler( shift=8.0, sigma_min=0.0, extra_one_step=True) scheduler.set_timesteps(num_inference_steps=48, denoising_strength=1.0) scheduler.sigmas = scheduler.sigmas.to(device) sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走' unconditional_dict = encoder( text_prompts=[sample_neg_prompt] ) return model, encoder, scheduler, unconditional_dict def main(): parser = argparse.ArgumentParser() parser.add_argument("--local_rank", type=int, default=-1) parser.add_argument("--output_folder", type=str) parser.add_argument("--caption_path", type=str) parser.add_argument("--guidance_scale", type=float, default=6.0) args = parser.parse_args() # launch_distributed_job() launch_distributed_job() device = torch.cuda.current_device() torch.set_grad_enabled(False) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True model, encoder, scheduler, unconditional_dict = init_model(device=device) dataset = TextDataset(args.caption_path) # if global_rank == 0: os.makedirs(args.output_folder, exist_ok=True) for index in tqdm(range(int(math.ceil(len(dataset) / dist.get_world_size()))), disable=dist.get_rank() != 0): prompt_index = index * dist.get_world_size() + dist.get_rank() if prompt_index >= len(dataset): continue prompt = dataset[prompt_index] conditional_dict = encoder(text_prompts=prompt) latents = torch.randn( [1, 21, 16, 60, 104], dtype=torch.float32, device=device ) noisy_input = [] for progress_id, t in enumerate(tqdm(scheduler.timesteps)): timestep = t * \ torch.ones([1, 21], device=device, dtype=torch.float32) noisy_input.append(latents) _, x0_pred_cond = model( latents, conditional_dict, timestep ) _, x0_pred_uncond = model( latents, unconditional_dict, timestep ) x0_pred = x0_pred_uncond + args.guidance_scale * ( x0_pred_cond - x0_pred_uncond ) flow_pred = model._convert_x0_to_flow_pred( scheduler=scheduler, x0_pred=x0_pred.flatten(0, 1), xt=latents.flatten(0, 1), timestep=timestep.flatten(0, 1) ).unflatten(0, x0_pred.shape[:2]) latents = scheduler.step( flow_pred.flatten(0, 1), scheduler.timesteps[progress_id] * torch.ones( [1, 21], device=device, dtype=torch.long).flatten(0, 1), latents.flatten(0, 1) ).unflatten(dim=0, sizes=flow_pred.shape[:2]) noisy_input.append(latents) noisy_inputs = torch.stack(noisy_input, dim=1) noisy_inputs = noisy_inputs[:, [0, 12, 24, 36, -1]] stored_data = noisy_inputs torch.save( {prompt: stored_data.cpu().detach()}, os.path.join(args.output_folder, f"{prompt_index:05d}.pt") ) dist.barrier() if __name__ == "__main__": main()