import numpy as np import random import torch def set_seed(seed: int, deterministic: bool = False): """ Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`. Args: seed (`int`): The seed to set. deterministic (`bool`, *optional*, defaults to `False`): Whether to use deterministic algorithms where available. Can slow down training. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.use_deterministic_algorithms(True) def merge_dict_list(dict_list): if len(dict_list) == 1: return dict_list[0] merged_dict = {} for k, v in dict_list[0].items(): if isinstance(v, torch.Tensor): if v.ndim == 0: merged_dict[k] = torch.stack([d[k] for d in dict_list], dim=0) else: merged_dict[k] = torch.cat([d[k] for d in dict_list], dim=0) else: # for non-tensor values, we just copy the value from the first item merged_dict[k] = v return merged_dict