from pipeline import SelfForcingTrainingPipeline import torch.nn.functional as F from typing import Optional, Tuple import torch from model.base import SelfForcingModel class DMD(SelfForcingModel): def __init__(self, args, device): """ Initialize the DMD (Distribution Matching Distillation) module. This class is self-contained and compute generator and fake score losses in the forward pass. """ super().__init__(args, device) self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) self.same_step_across_blocks = getattr(args, "same_step_across_blocks", True) self.num_training_frames = getattr(args, "num_training_frames", 21) if self.num_frame_per_block > 1: self.generator.model.num_frame_per_block = self.num_frame_per_block self.independent_first_frame = getattr(args, "independent_first_frame", False) if self.independent_first_frame: self.generator.model.independent_first_frame = True if args.gradient_checkpointing: self.generator.enable_gradient_checkpointing() self.fake_score.enable_gradient_checkpointing() # this will be init later with fsdp-wrapped modules self.inference_pipeline: SelfForcingTrainingPipeline = None # Step 2: Initialize all dmd hyperparameters self.num_train_timestep = args.num_train_timestep self.min_step = int(0.02 * self.num_train_timestep) self.max_step = int(0.98 * self.num_train_timestep) if hasattr(args, "real_guidance_scale"): self.real_guidance_scale = args.real_guidance_scale self.fake_guidance_scale = args.fake_guidance_scale else: self.real_guidance_scale = args.guidance_scale self.fake_guidance_scale = 0.0 self.timestep_shift = getattr(args, "timestep_shift", 1.0) self.ts_schedule = getattr(args, "ts_schedule", True) self.ts_schedule_max = getattr(args, "ts_schedule_max", False) self.min_score_timestep = getattr(args, "min_score_timestep", 0) if getattr(self.scheduler, "alphas_cumprod", None) is not None: self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device) else: self.scheduler.alphas_cumprod = None def _compute_kl_grad( self, noisy_image_or_video: torch.Tensor, estimated_clean_image_or_video: torch.Tensor, timestep: torch.Tensor, conditional_dict: dict, unconditional_dict: dict, normalization: bool = True ) -> Tuple[torch.Tensor, dict]: """ Compute the KL grad (eq 7 in https://arxiv.org/abs/2311.18828). Input: - noisy_image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images. - estimated_clean_image_or_video: a tensor with shape [B, F, C, H, W] representing the estimated clean image or video. - timestep: a tensor with shape [B, F] containing the randomly generated timestep. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - normalization: a boolean indicating whether to normalize the gradient. Output: - kl_grad: a tensor representing the KL grad. - kl_log_dict: a dictionary containing the intermediate tensors for logging. """ # Step 1: Compute the fake score _, pred_fake_image_cond = self.fake_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=conditional_dict, timestep=timestep ) if self.fake_guidance_scale != 0.0: _, pred_fake_image_uncond = self.fake_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=unconditional_dict, timestep=timestep ) pred_fake_image = pred_fake_image_cond + ( pred_fake_image_cond - pred_fake_image_uncond ) * self.fake_guidance_scale else: pred_fake_image = pred_fake_image_cond # Step 2: Compute the real score # We compute the conditional and unconditional prediction # and add them together to achieve cfg (https://arxiv.org/abs/2207.12598) _, pred_real_image_cond = self.real_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=conditional_dict, timestep=timestep ) _, pred_real_image_uncond = self.real_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=unconditional_dict, timestep=timestep ) pred_real_image = pred_real_image_cond + ( pred_real_image_cond - pred_real_image_uncond ) * self.real_guidance_scale # Step 3: Compute the DMD gradient (DMD paper eq. 7). grad = (pred_fake_image - pred_real_image) # TODO: Change the normalizer for causal teacher if normalization: # Step 4: Gradient normalization (DMD paper eq. 8). p_real = (estimated_clean_image_or_video - pred_real_image) normalizer = torch.abs(p_real).mean(dim=[1, 2, 3, 4], keepdim=True) grad = grad / normalizer grad = torch.nan_to_num(grad) return grad, { "dmdtrain_gradient_norm": torch.mean(torch.abs(grad)).detach(), "timestep": timestep.detach() } def compute_distribution_matching_loss( self, image_or_video: torch.Tensor, conditional_dict: dict, unconditional_dict: dict, gradient_mask: Optional[torch.Tensor] = None, denoised_timestep_from: int = 0, denoised_timestep_to: int = 0 ) -> Tuple[torch.Tensor, dict]: """ Compute the DMD loss (eq 7 in https://arxiv.org/abs/2311.18828). Input: - image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - gradient_mask: a boolean tensor with the same shape as image_or_video indicating which pixels to compute loss . Output: - dmd_loss: a scalar tensor representing the DMD loss. - dmd_log_dict: a dictionary containing the intermediate tensors for logging. """ original_latent = image_or_video batch_size, num_frame = image_or_video.shape[:2] with torch.no_grad(): # Step 1: Randomly sample timestep based on the given schedule and corresponding noise min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep timestep = self._get_timestep( min_timestep, max_timestep, batch_size, num_frame, self.num_frame_per_block, uniform_timestep=True ) # TODO:should we change it to `timestep = self.scheduler.timesteps[timestep]`? if self.timestep_shift > 1: timestep = self.timestep_shift * \ (timestep / 1000) / \ (1 + (self.timestep_shift - 1) * (timestep / 1000)) * 1000 timestep = timestep.clamp(self.min_step, self.max_step) noise = torch.randn_like(image_or_video) noisy_latent = self.scheduler.add_noise( image_or_video.flatten(0, 1), noise.flatten(0, 1), timestep.flatten(0, 1) ).detach().unflatten(0, (batch_size, num_frame)) # Step 2: Compute the KL grad grad, dmd_log_dict = self._compute_kl_grad( noisy_image_or_video=noisy_latent, estimated_clean_image_or_video=original_latent, timestep=timestep, conditional_dict=conditional_dict, unconditional_dict=unconditional_dict ) if gradient_mask is not None: dmd_loss = 0.5 * F.mse_loss(original_latent.double( )[gradient_mask], (original_latent.double() - grad.double()).detach()[gradient_mask], reduction="mean") else: dmd_loss = 0.5 * F.mse_loss(original_latent.double( ), (original_latent.double() - grad.double()).detach(), reduction="mean") return dmd_loss, dmd_log_dict def generator_loss( self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor, initial_latent: torch.Tensor = None ) -> Tuple[torch.Tensor, dict]: """ Generate image/videos from noise and compute the DMD loss. The noisy input to the generator is backward simulated. This removes the need of any datasets during distillation. See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. Input: - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. Output: - loss: a scalar tensor representing the generator loss. - generator_log_dict: a dictionary containing the intermediate tensors for logging. """ # Step 1: Unroll generator to obtain fake videos pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator( image_or_video_shape=image_or_video_shape, conditional_dict=conditional_dict, initial_latent=initial_latent ) # Step 2: Compute the DMD loss dmd_loss, dmd_log_dict = self.compute_distribution_matching_loss( image_or_video=pred_image, conditional_dict=conditional_dict, unconditional_dict=unconditional_dict, gradient_mask=gradient_mask, denoised_timestep_from=denoised_timestep_from, denoised_timestep_to=denoised_timestep_to ) return dmd_loss, dmd_log_dict def critic_loss( self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor, initial_latent: torch.Tensor = None ) -> Tuple[torch.Tensor, dict]: """ Generate image/videos from noise and train the critic with generated samples. The noisy input to the generator is backward simulated. This removes the need of any datasets during distillation. See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. Input: - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. Output: - loss: a scalar tensor representing the generator loss. - critic_log_dict: a dictionary containing the intermediate tensors for logging. """ # Step 1: Run generator on backward simulated noisy input with torch.no_grad(): generated_image, _, denoised_timestep_from, denoised_timestep_to = self._run_generator( image_or_video_shape=image_or_video_shape, conditional_dict=conditional_dict, initial_latent=initial_latent ) # Step 2: Compute the fake prediction min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep critic_timestep = self._get_timestep( min_timestep, max_timestep, image_or_video_shape[0], image_or_video_shape[1], self.num_frame_per_block, uniform_timestep=True ) if self.timestep_shift > 1: critic_timestep = self.timestep_shift * \ (critic_timestep / 1000) / (1 + (self.timestep_shift - 1) * (critic_timestep / 1000)) * 1000 critic_timestep = critic_timestep.clamp(self.min_step, self.max_step) critic_noise = torch.randn_like(generated_image) noisy_generated_image = self.scheduler.add_noise( generated_image.flatten(0, 1), critic_noise.flatten(0, 1), critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) _, pred_fake_image = self.fake_score( noisy_image_or_video=noisy_generated_image, conditional_dict=conditional_dict, timestep=critic_timestep ) # Step 3: Compute the denoising loss for the fake critic if self.args.denoising_loss_type == "flow": from utils.wan_wrapper import WanDiffusionWrapper flow_pred = WanDiffusionWrapper._convert_x0_to_flow_pred( scheduler=self.scheduler, x0_pred=pred_fake_image.flatten(0, 1), xt=noisy_generated_image.flatten(0, 1), timestep=critic_timestep.flatten(0, 1) ) pred_fake_noise = None else: flow_pred = None pred_fake_noise = self.scheduler.convert_x0_to_noise( x0=pred_fake_image.flatten(0, 1), xt=noisy_generated_image.flatten(0, 1), timestep=critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) denoising_loss = self.denoising_loss_func( x=generated_image.flatten(0, 1), x_pred=pred_fake_image.flatten(0, 1), noise=critic_noise.flatten(0, 1), noise_pred=pred_fake_noise, alphas_cumprod=self.scheduler.alphas_cumprod, timestep=critic_timestep.flatten(0, 1), flow_pred=flow_pred ) # Step 5: Debugging Log critic_log_dict = { "critic_timestep": critic_timestep.detach() } return denoising_loss, critic_log_dict