from pipeline import SelfForcingTrainingPipeline from typing import Optional, Tuple import torch from model.base import SelfForcingModel class SiD(SelfForcingModel): def __init__(self, args, device): """ Initialize the DMD (Distribution Matching Distillation) module. This class is self-contained and compute generator and fake score losses in the forward pass. """ super().__init__(args, device) self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) if self.num_frame_per_block > 1: self.generator.model.num_frame_per_block = self.num_frame_per_block if args.gradient_checkpointing: self.generator.enable_gradient_checkpointing() self.fake_score.enable_gradient_checkpointing() self.real_score.enable_gradient_checkpointing() # this will be init later with fsdp-wrapped modules self.inference_pipeline: SelfForcingTrainingPipeline = None # Step 2: Initialize all dmd hyperparameters self.num_train_timestep = args.num_train_timestep self.min_step = int(0.02 * self.num_train_timestep) self.max_step = int(0.98 * self.num_train_timestep) if hasattr(args, "real_guidance_scale"): self.real_guidance_scale = args.real_guidance_scale else: self.real_guidance_scale = args.guidance_scale self.timestep_shift = getattr(args, "timestep_shift", 1.0) self.sid_alpha = getattr(args, "sid_alpha", 1.0) self.ts_schedule = getattr(args, "ts_schedule", True) self.ts_schedule_max = getattr(args, "ts_schedule_max", False) if getattr(self.scheduler, "alphas_cumprod", None) is not None: self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device) else: self.scheduler.alphas_cumprod = None def compute_distribution_matching_loss( self, image_or_video: torch.Tensor, conditional_dict: dict, unconditional_dict: dict, gradient_mask: Optional[torch.Tensor] = None, denoised_timestep_from: int = 0, denoised_timestep_to: int = 0 ) -> Tuple[torch.Tensor, dict]: """ Compute the DMD loss (eq 7 in https://arxiv.org/abs/2311.18828). Input: - image_or_video: a tensor with shape [B, F, C, H, W] where the number of frame is 1 for images. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - gradient_mask: a boolean tensor with the same shape as image_or_video indicating which pixels to compute loss . Output: - dmd_loss: a scalar tensor representing the DMD loss. - dmd_log_dict: a dictionary containing the intermediate tensors for logging. """ original_latent = image_or_video batch_size, num_frame = image_or_video.shape[:2] # Step 1: Randomly sample timestep based on the given schedule and corresponding noise min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep timestep = self._get_timestep( min_timestep, max_timestep, batch_size, num_frame, self.num_frame_per_block, uniform_timestep=True ) if self.timestep_shift > 1: timestep = self.timestep_shift * \ (timestep / 1000) / \ (1 + (self.timestep_shift - 1) * (timestep / 1000)) * 1000 timestep = timestep.clamp(self.min_step, self.max_step) noise = torch.randn_like(image_or_video) noisy_latent = self.scheduler.add_noise( image_or_video.flatten(0, 1), noise.flatten(0, 1), timestep.flatten(0, 1) ).unflatten(0, (batch_size, num_frame)) # Step 2: SiD (May be wrap it?) noisy_image_or_video = noisy_latent # Step 2.1: Compute the fake score _, pred_fake_image = self.fake_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=conditional_dict, timestep=timestep ) # Step 2.2: Compute the real score # We compute the conditional and unconditional prediction # and add them together to achieve cfg (https://arxiv.org/abs/2207.12598) # NOTE: This step may cause OOM issue, which can be addressed by the CFG-free technique _, pred_real_image_cond = self.real_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=conditional_dict, timestep=timestep ) _, pred_real_image_uncond = self.real_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=unconditional_dict, timestep=timestep ) pred_real_image = pred_real_image_cond + ( pred_real_image_cond - pred_real_image_uncond ) * self.real_guidance_scale # Step 2.3: SiD Loss # TODO: Add alpha # TODO: Double? sid_loss = (pred_real_image.double() - pred_fake_image.double()) * ((pred_real_image.double() - original_latent.double()) - self.sid_alpha * (pred_real_image.double() - pred_fake_image.double())) # Step 2.4: Loss normalizer with torch.no_grad(): p_real = (original_latent - pred_real_image) normalizer = torch.abs(p_real).mean(dim=[1, 2, 3, 4], keepdim=True) sid_loss = sid_loss / normalizer sid_loss = torch.nan_to_num(sid_loss) num_frame = sid_loss.shape[1] sid_loss = sid_loss.mean() sid_log_dict = { "dmdtrain_gradient_norm": torch.zeros_like(sid_loss), "timestep": timestep.detach() } return sid_loss, sid_log_dict def generator_loss( self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor, initial_latent: torch.Tensor = None ) -> Tuple[torch.Tensor, dict]: """ Generate image/videos from noise and compute the DMD loss. The noisy input to the generator is backward simulated. This removes the need of any datasets during distillation. See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. Input: - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. Output: - loss: a scalar tensor representing the generator loss. - generator_log_dict: a dictionary containing the intermediate tensors for logging. """ # Step 1: Unroll generator to obtain fake videos pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator( image_or_video_shape=image_or_video_shape, conditional_dict=conditional_dict, initial_latent=initial_latent ) # Step 2: Compute the DMD loss dmd_loss, dmd_log_dict = self.compute_distribution_matching_loss( image_or_video=pred_image, conditional_dict=conditional_dict, unconditional_dict=unconditional_dict, gradient_mask=gradient_mask, denoised_timestep_from=denoised_timestep_from, denoised_timestep_to=denoised_timestep_to ) return dmd_loss, dmd_log_dict def critic_loss( self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor, initial_latent: torch.Tensor = None ) -> Tuple[torch.Tensor, dict]: """ Generate image/videos from noise and train the critic with generated samples. The noisy input to the generator is backward simulated. This removes the need of any datasets during distillation. See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. Input: - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. Output: - loss: a scalar tensor representing the generator loss. - critic_log_dict: a dictionary containing the intermediate tensors for logging. """ # Step 1: Run generator on backward simulated noisy input with torch.no_grad(): generated_image, _, denoised_timestep_from, denoised_timestep_to = self._run_generator( image_or_video_shape=image_or_video_shape, conditional_dict=conditional_dict, initial_latent=initial_latent ) # Step 2: Compute the fake prediction min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep critic_timestep = self._get_timestep( min_timestep, max_timestep, image_or_video_shape[0], image_or_video_shape[1], self.num_frame_per_block, uniform_timestep=True ) if self.timestep_shift > 1: critic_timestep = self.timestep_shift * \ (critic_timestep / 1000) / (1 + (self.timestep_shift - 1) * (critic_timestep / 1000)) * 1000 critic_timestep = critic_timestep.clamp(self.min_step, self.max_step) critic_noise = torch.randn_like(generated_image) noisy_generated_image = self.scheduler.add_noise( generated_image.flatten(0, 1), critic_noise.flatten(0, 1), critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) _, pred_fake_image = self.fake_score( noisy_image_or_video=noisy_generated_image, conditional_dict=conditional_dict, timestep=critic_timestep ) # Step 3: Compute the denoising loss for the fake critic if self.args.denoising_loss_type == "flow": from utils.wan_wrapper import WanDiffusionWrapper flow_pred = WanDiffusionWrapper._convert_x0_to_flow_pred( scheduler=self.scheduler, x0_pred=pred_fake_image.flatten(0, 1), xt=noisy_generated_image.flatten(0, 1), timestep=critic_timestep.flatten(0, 1) ) pred_fake_noise = None else: flow_pred = None pred_fake_noise = self.scheduler.convert_x0_to_noise( x0=pred_fake_image.flatten(0, 1), xt=noisy_generated_image.flatten(0, 1), timestep=critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) denoising_loss = self.denoising_loss_func( x=generated_image.flatten(0, 1), x_pred=pred_fake_image.flatten(0, 1), noise=critic_noise.flatten(0, 1), noise_pred=pred_fake_noise, alphas_cumprod=self.scheduler.alphas_cumprod, timestep=critic_timestep.flatten(0, 1), flow_pred=flow_pred ) # Step 5: Debugging Log critic_log_dict = { "critic_timestep": critic_timestep.detach() } return denoising_loss, critic_log_dict