import copy from pipeline import SelfForcingTrainingPipeline import torch.nn.functional as F from typing import Tuple import torch from model.base import SelfForcingModel class GAN(SelfForcingModel): def __init__(self, args, device): """ Initialize the GAN module. This class is self-contained and compute generator and fake score losses in the forward pass. """ super().__init__(args, device) self.num_frame_per_block = getattr(args, "num_frame_per_block", 1) self.same_step_across_blocks = getattr(args, "same_step_across_blocks", True) self.concat_time_embeddings = getattr(args, "concat_time_embeddings", False) self.num_class = args.num_class self.relativistic_discriminator = getattr(args, "relativistic_discriminator", False) if self.num_frame_per_block > 1: self.generator.model.num_frame_per_block = self.num_frame_per_block self.fake_score.adding_cls_branch( atten_dim=1536, num_class=args.num_class, time_embed_dim=1536 if self.concat_time_embeddings else 0) self.fake_score.model.requires_grad_(True) self.independent_first_frame = getattr(args, "independent_first_frame", False) if self.independent_first_frame: self.generator.model.independent_first_frame = True if args.gradient_checkpointing: self.generator.enable_gradient_checkpointing() self.fake_score.enable_gradient_checkpointing() # this will be init later with fsdp-wrapped modules self.inference_pipeline: SelfForcingTrainingPipeline = None # Step 2: Initialize all dmd hyperparameters self.num_train_timestep = args.num_train_timestep self.min_step = int(0.02 * self.num_train_timestep) self.max_step = int(0.98 * self.num_train_timestep) if hasattr(args, "real_guidance_scale"): self.real_guidance_scale = args.real_guidance_scale self.fake_guidance_scale = args.fake_guidance_scale else: self.real_guidance_scale = args.guidance_scale self.fake_guidance_scale = 0.0 self.timestep_shift = getattr(args, "timestep_shift", 1.0) self.critic_timestep_shift = getattr(args, "critic_timestep_shift", self.timestep_shift) self.ts_schedule = getattr(args, "ts_schedule", True) self.ts_schedule_max = getattr(args, "ts_schedule_max", False) self.min_score_timestep = getattr(args, "min_score_timestep", 0) self.gan_g_weight = getattr(args, "gan_g_weight", 1e-2) self.gan_d_weight = getattr(args, "gan_d_weight", 1e-2) self.r1_weight = getattr(args, "r1_weight", 0.0) self.r2_weight = getattr(args, "r2_weight", 0.0) self.r1_sigma = getattr(args, "r1_sigma", 0.01) self.r2_sigma = getattr(args, "r2_sigma", 0.01) if getattr(self.scheduler, "alphas_cumprod", None) is not None: self.scheduler.alphas_cumprod = self.scheduler.alphas_cumprod.to(device) else: self.scheduler.alphas_cumprod = None def _run_cls_pred_branch(self, noisy_image_or_video: torch.Tensor, conditional_dict: dict, timestep: torch.Tensor) -> torch.Tensor: """ Run the classifier prediction branch on the generated image or video. Input: - image_or_video: a tensor with shape [B, F, C, H, W]. Output: - cls_pred: a tensor with shape [B, 1, 1, 1, 1] representing the feature map for classification. """ _, _, noisy_logit = self.fake_score( noisy_image_or_video=noisy_image_or_video, conditional_dict=conditional_dict, timestep=timestep, classify_mode=True, concat_time_embeddings=self.concat_time_embeddings ) return noisy_logit def generator_loss( self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor, initial_latent: torch.Tensor = None ) -> Tuple[torch.Tensor, dict]: """ Generate image/videos from noise and compute the DMD loss. The noisy input to the generator is backward simulated. This removes the need of any datasets during distillation. See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. Input: - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. Output: - loss: a scalar tensor representing the generator loss. - generator_log_dict: a dictionary containing the intermediate tensors for logging. """ # Step 1: Unroll generator to obtain fake videos pred_image, gradient_mask, denoised_timestep_from, denoised_timestep_to = self._run_generator( image_or_video_shape=image_or_video_shape, conditional_dict=conditional_dict, initial_latent=initial_latent ) # Step 2: Get timestep and add noise to generated/real latents min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep critic_timestep = self._get_timestep( min_timestep, max_timestep, image_or_video_shape[0], image_or_video_shape[1], self.num_frame_per_block, uniform_timestep=True ) if self.critic_timestep_shift > 1: critic_timestep = self.critic_timestep_shift * \ (critic_timestep / 1000) / (1 + (self.critic_timestep_shift - 1) * (critic_timestep / 1000)) * 1000 critic_timestep = critic_timestep.clamp(self.min_step, self.max_step) critic_noise = torch.randn_like(pred_image) noisy_fake_latent = self.scheduler.add_noise( pred_image.flatten(0, 1), critic_noise.flatten(0, 1), critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) # Step 4: Compute the real GAN discriminator loss real_image_or_video = clean_latent.clone() critic_noise = torch.randn_like(real_image_or_video) noisy_real_latent = self.scheduler.add_noise( real_image_or_video.flatten(0, 1), critic_noise.flatten(0, 1), critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) conditional_dict["prompt_embeds"] = torch.concatenate( (conditional_dict["prompt_embeds"], conditional_dict["prompt_embeds"]), dim=0) critic_timestep = torch.concatenate((critic_timestep, critic_timestep), dim=0) noisy_latent = torch.concatenate((noisy_fake_latent, noisy_real_latent), dim=0) _, _, noisy_logit = self.fake_score( noisy_image_or_video=noisy_latent, conditional_dict=conditional_dict, timestep=critic_timestep, classify_mode=True, concat_time_embeddings=self.concat_time_embeddings ) noisy_fake_logit, noisy_real_logit = noisy_logit.chunk(2, dim=0) if not self.relativistic_discriminator: gan_G_loss = F.softplus(-noisy_fake_logit.float()).mean() * self.gan_g_weight else: relative_fake_logit = noisy_fake_logit - noisy_real_logit gan_G_loss = F.softplus(-relative_fake_logit.float()).mean() * self.gan_g_weight return gan_G_loss def critic_loss( self, image_or_video_shape, conditional_dict: dict, unconditional_dict: dict, clean_latent: torch.Tensor, real_image_or_video: torch.Tensor, initial_latent: torch.Tensor = None ) -> Tuple[torch.Tensor, dict]: """ Generate image/videos from noise and train the critic with generated samples. The noisy input to the generator is backward simulated. This removes the need of any datasets during distillation. See Sec 4.5 of the DMD2 paper (https://arxiv.org/abs/2405.14867) for details. Input: - image_or_video_shape: a list containing the shape of the image or video [B, F, C, H, W]. - conditional_dict: a dictionary containing the conditional information (e.g. text embeddings, image embeddings). - unconditional_dict: a dictionary containing the unconditional information (e.g. null/negative text embeddings, null/negative image embeddings). - clean_latent: a tensor containing the clean latents [B, F, C, H, W]. Need to be passed when no backward simulation is used. Output: - loss: a scalar tensor representing the generator loss. - critic_log_dict: a dictionary containing the intermediate tensors for logging. """ # Step 1: Run generator on backward simulated noisy input with torch.no_grad(): generated_image, _, denoised_timestep_from, denoised_timestep_to, num_sim_steps = self._run_generator( image_or_video_shape=image_or_video_shape, conditional_dict=conditional_dict, initial_latent=initial_latent ) # Step 2: Get timestep and add noise to generated/real latents min_timestep = denoised_timestep_to if self.ts_schedule and denoised_timestep_to is not None else self.min_score_timestep max_timestep = denoised_timestep_from if self.ts_schedule_max and denoised_timestep_from is not None else self.num_train_timestep critic_timestep = self._get_timestep( min_timestep, max_timestep, image_or_video_shape[0], image_or_video_shape[1], self.num_frame_per_block, uniform_timestep=True ) if self.critic_timestep_shift > 1: critic_timestep = self.critic_timestep_shift * \ (critic_timestep / 1000) / (1 + (self.critic_timestep_shift - 1) * (critic_timestep / 1000)) * 1000 critic_timestep = critic_timestep.clamp(self.min_step, self.max_step) critic_noise = torch.randn_like(generated_image) noisy_fake_latent = self.scheduler.add_noise( generated_image.flatten(0, 1), critic_noise.flatten(0, 1), critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) # Step 4: Compute the real GAN discriminator loss noisy_real_latent = self.scheduler.add_noise( real_image_or_video.flatten(0, 1), critic_noise.flatten(0, 1), critic_timestep.flatten(0, 1) ).unflatten(0, image_or_video_shape[:2]) conditional_dict_cloned = copy.deepcopy(conditional_dict) conditional_dict_cloned["prompt_embeds"] = torch.concatenate( (conditional_dict_cloned["prompt_embeds"], conditional_dict_cloned["prompt_embeds"]), dim=0) _, _, noisy_logit = self.fake_score( noisy_image_or_video=torch.concatenate((noisy_fake_latent, noisy_real_latent), dim=0), conditional_dict=conditional_dict_cloned, timestep=torch.concatenate((critic_timestep, critic_timestep), dim=0), classify_mode=True, concat_time_embeddings=self.concat_time_embeddings ) noisy_fake_logit, noisy_real_logit = noisy_logit.chunk(2, dim=0) if not self.relativistic_discriminator: gan_D_loss = F.softplus(-noisy_real_logit.float()).mean() + F.softplus(noisy_fake_logit.float()).mean() else: relative_real_logit = noisy_real_logit - noisy_fake_logit gan_D_loss = F.softplus(-relative_real_logit.float()).mean() gan_D_loss = gan_D_loss * self.gan_d_weight # R1 regularization if self.r1_weight > 0.: noisy_real_latent_perturbed = noisy_real_latent.clone() epison_real = self.r1_sigma * torch.randn_like(noisy_real_latent_perturbed) noisy_real_latent_perturbed = noisy_real_latent_perturbed + epison_real noisy_real_logit_perturbed = self._run_cls_pred_branch( noisy_image_or_video=noisy_real_latent_perturbed, conditional_dict=conditional_dict, timestep=critic_timestep ) r1_grad = (noisy_real_logit_perturbed - noisy_real_logit) / self.r1_sigma r1_loss = self.r1_weight * torch.mean((r1_grad)**2) else: r1_loss = torch.zeros_like(gan_D_loss) # R2 regularization if self.r2_weight > 0.: noisy_fake_latent_perturbed = noisy_fake_latent.clone() epison_generated = self.r2_sigma * torch.randn_like(noisy_fake_latent_perturbed) noisy_fake_latent_perturbed = noisy_fake_latent_perturbed + epison_generated noisy_fake_logit_perturbed = self._run_cls_pred_branch( noisy_image_or_video=noisy_fake_latent_perturbed, conditional_dict=conditional_dict, timestep=critic_timestep ) r2_grad = (noisy_fake_logit_perturbed - noisy_fake_logit) / self.r2_sigma r2_loss = self.r2_weight * torch.mean((r2_grad)**2) else: r2_loss = torch.zeros_like(r2_loss) critic_log_dict = { "critic_timestep": critic_timestep.detach(), 'noisy_real_logit': noisy_real_logit.detach(), 'noisy_fake_logit': noisy_fake_logit.detach(), } return (gan_D_loss, r1_loss, r2_loss), critic_log_dict