from abc import abstractmethod, ABC import torch class SchedulerInterface(ABC): """ Base class for diffusion noise schedule. """ alphas_cumprod: torch.Tensor # [T], alphas for defining the noise schedule @abstractmethod def add_noise( self, clean_latent: torch.Tensor, noise: torch.Tensor, timestep: torch.Tensor ): """ Diffusion forward corruption process. Input: - clean_latent: the clean latent with shape [B, C, H, W] - noise: the noise with shape [B, C, H, W] - timestep: the timestep with shape [B] Output: the corrupted latent with shape [B, C, H, W] """ pass def convert_x0_to_noise( self, x0: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor ) -> torch.Tensor: """ Convert the diffusion network's x0 prediction to noise predidction. x0: the predicted clean data with shape [B, C, H, W] xt: the input noisy data with shape [B, C, H, W] timestep: the timestep with shape [B] noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) (eq 11 in https://arxiv.org/abs/2311.18828) """ # use higher precision for calculations original_dtype = x0.dtype x0, xt, alphas_cumprod = map( lambda x: x.double().to(x0.device), [x0, xt, self.alphas_cumprod] ) alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) beta_prod_t = 1 - alpha_prod_t noise_pred = (xt - alpha_prod_t ** (0.5) * x0) / beta_prod_t ** (0.5) return noise_pred.to(original_dtype) def convert_noise_to_x0( self, noise: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor ) -> torch.Tensor: """ Convert the diffusion network's noise prediction to x0 predidction. noise: the predicted noise with shape [B, C, H, W] xt: the input noisy data with shape [B, C, H, W] timestep: the timestep with shape [B] x0 = (x_t - sqrt(beta_t) * noise) / sqrt(alpha_t) (eq 11 in https://arxiv.org/abs/2311.18828) """ # use higher precision for calculations original_dtype = noise.dtype noise, xt, alphas_cumprod = map( lambda x: x.double().to(noise.device), [noise, xt, self.alphas_cumprod] ) alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) beta_prod_t = 1 - alpha_prod_t x0_pred = (xt - beta_prod_t ** (0.5) * noise) / alpha_prod_t ** (0.5) return x0_pred.to(original_dtype) def convert_velocity_to_x0( self, velocity: torch.Tensor, xt: torch.Tensor, timestep: torch.Tensor ) -> torch.Tensor: """ Convert the diffusion network's velocity prediction to x0 predidction. velocity: the predicted noise with shape [B, C, H, W] xt: the input noisy data with shape [B, C, H, W] timestep: the timestep with shape [B] v = sqrt(alpha_t) * noise - sqrt(beta_t) x0 noise = (xt-sqrt(alpha_t)*x0) / sqrt(beta_t) given v, x_t, we have x0 = sqrt(alpha_t) * x_t - sqrt(beta_t) * v see derivations https://chatgpt.com/share/679fb6c8-3a30-8008-9b0e-d1ae892dac56 """ # use higher precision for calculations original_dtype = velocity.dtype velocity, xt, alphas_cumprod = map( lambda x: x.double().to(velocity.device), [velocity, xt, self.alphas_cumprod] ) alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1) beta_prod_t = 1 - alpha_prod_t x0_pred = (alpha_prod_t ** 0.5) * xt - (beta_prod_t ** 0.5) * velocity return x0_pred.to(original_dtype) class FlowMatchScheduler(): def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False): self.num_train_timesteps = num_train_timesteps self.shift = shift self.sigma_max = sigma_max self.sigma_min = sigma_min self.inverse_timesteps = inverse_timesteps self.extra_one_step = extra_one_step self.reverse_sigmas = reverse_sigmas self.set_timesteps(num_inference_steps) def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False): sigma_start = self.sigma_min + \ (self.sigma_max - self.sigma_min) * denoising_strength if self.extra_one_step: self.sigmas = torch.linspace( sigma_start, self.sigma_min, num_inference_steps + 1)[:-1] else: self.sigmas = torch.linspace( sigma_start, self.sigma_min, num_inference_steps) if self.inverse_timesteps: self.sigmas = torch.flip(self.sigmas, dims=[0]) self.sigmas = self.shift * self.sigmas / \ (1 + (self.shift - 1) * self.sigmas) if self.reverse_sigmas: self.sigmas = 1 - self.sigmas self.timesteps = self.sigmas * self.num_train_timesteps if training: x = self.timesteps y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2) y_shifted = y - y.min() bsmntw_weighing = y_shifted * \ (num_inference_steps / y_shifted.sum()) self.linear_timesteps_weights = bsmntw_weighing def step(self, model_output, timestep, sample, to_final=False): if timestep.ndim == 2: timestep = timestep.flatten(0, 1) self.sigmas = self.sigmas.to(model_output.device) self.timesteps = self.timesteps.to(model_output.device) timestep_id = torch.argmin( (self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1) sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1) if to_final or (timestep_id + 1 >= len(self.timesteps)).any(): sigma_ = 1 if ( self.inverse_timesteps or self.reverse_sigmas) else 0 else: sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1) prev_sample = sample + model_output * (sigma_ - sigma) return prev_sample def add_noise(self, original_samples, noise, timestep): """ Diffusion forward corruption process. Input: - clean_latent: the clean latent with shape [B*T, C, H, W] - noise: the noise with shape [B*T, C, H, W] - timestep: the timestep with shape [B*T] Output: the corrupted latent with shape [B*T, C, H, W] """ if timestep.ndim == 2: timestep = timestep.flatten(0, 1) self.sigmas = self.sigmas.to(noise.device) self.timesteps = self.timesteps.to(noise.device) timestep_id = torch.argmin( (self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1) sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1) sample = (1 - sigma) * original_samples + sigma * noise return sample.type_as(noise) def training_target(self, sample, noise, timestep): target = noise - sample return target def training_weight(self, timestep): """ Input: - timestep: the timestep with shape [B*T] Output: the corresponding weighting [B*T] """ if timestep.ndim == 2: timestep = timestep.flatten(0, 1) self.linear_timesteps_weights = self.linear_timesteps_weights.to(timestep.device) timestep_id = torch.argmin( (self.timesteps.unsqueeze(1) - timestep.unsqueeze(0)).abs(), dim=0) weights = self.linear_timesteps_weights[timestep_id] return weights