Spaces:
Runtime error
Runtime error
Delete clipseg/metrics.py
Browse files- clipseg/metrics.py +0 -271
clipseg/metrics.py
DELETED
@@ -1,271 +0,0 @@
|
|
1 |
-
from torch.functional import Tensor
|
2 |
-
from general_utils import log
|
3 |
-
from collections import defaultdict
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
import torch
|
7 |
-
from torch.nn import functional as nnf
|
8 |
-
|
9 |
-
|
10 |
-
class BaseMetric(object):
|
11 |
-
|
12 |
-
def __init__(self, metric_names, pred_range=None, gt_index=0, pred_index=0, eval_intermediate=True,
|
13 |
-
eval_validation=True):
|
14 |
-
self._names = tuple(metric_names)
|
15 |
-
self._eval_intermediate = eval_intermediate
|
16 |
-
self._eval_validation = eval_validation
|
17 |
-
|
18 |
-
self._pred_range = pred_range
|
19 |
-
self._pred_index = pred_index
|
20 |
-
self._gt_index = gt_index
|
21 |
-
|
22 |
-
self.predictions = []
|
23 |
-
self.ground_truths = []
|
24 |
-
|
25 |
-
def eval_intermediate(self):
|
26 |
-
return self._eval_intermediate
|
27 |
-
|
28 |
-
def eval_validation(self):
|
29 |
-
return self._eval_validation
|
30 |
-
|
31 |
-
def names(self):
|
32 |
-
return self._names
|
33 |
-
|
34 |
-
def add(self, predictions, ground_truth):
|
35 |
-
raise NotImplementedError
|
36 |
-
|
37 |
-
def value(self):
|
38 |
-
raise NotImplementedError
|
39 |
-
|
40 |
-
def scores(self):
|
41 |
-
# similar to value but returns dict
|
42 |
-
value = self.value()
|
43 |
-
if type(value) == dict:
|
44 |
-
return value
|
45 |
-
else:
|
46 |
-
assert type(value) in {list, tuple}
|
47 |
-
return list(zip(self.names(), self.value()))
|
48 |
-
|
49 |
-
def _get_pred_gt(self, predictions, ground_truth):
|
50 |
-
pred = predictions[self._pred_index]
|
51 |
-
gt = ground_truth[self._gt_index]
|
52 |
-
|
53 |
-
if self._pred_range is not None:
|
54 |
-
pred = pred[:, self._pred_range[0]: self._pred_range[1]]
|
55 |
-
|
56 |
-
return pred, gt
|
57 |
-
|
58 |
-
|
59 |
-
class FixedIntervalMetrics(BaseMetric):
|
60 |
-
|
61 |
-
def __init__(self, sigmoid=False, ignore_mask=False, resize_to=None,
|
62 |
-
resize_pred=None, n_values=51, custom_threshold=None):
|
63 |
-
|
64 |
-
|
65 |
-
super().__init__(('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'))
|
66 |
-
self.intersections = []
|
67 |
-
self.unions = []
|
68 |
-
# self.threshold = threshold
|
69 |
-
self.sigmoid = sigmoid
|
70 |
-
self.resize_to = resize_to
|
71 |
-
self.resize_pred = resize_pred # resize prediction to match ground truth
|
72 |
-
self.class_count = defaultdict(lambda: 0)
|
73 |
-
self.per_class = defaultdict(lambda : [0,0])
|
74 |
-
self.ignore_mask = ignore_mask
|
75 |
-
self.custom_threshold = custom_threshold
|
76 |
-
|
77 |
-
self.scores_ap = []
|
78 |
-
self.scores_iou = []
|
79 |
-
self.gts, self.preds = [], []
|
80 |
-
self.classes = []
|
81 |
-
|
82 |
-
# [1:-1] ignores 0 and 1
|
83 |
-
self.threshold_values = np.linspace(0, 1, n_values)[1:-1]
|
84 |
-
|
85 |
-
self.metrics = dict(tp=[], fp=[], fn=[], tn=[])
|
86 |
-
|
87 |
-
def add(self, pred, gt):
|
88 |
-
|
89 |
-
pred_batch = pred[0].cpu()
|
90 |
-
|
91 |
-
if self.sigmoid:
|
92 |
-
pred_batch = torch.sigmoid(pred_batch)
|
93 |
-
|
94 |
-
gt_batch = gt[0].cpu()
|
95 |
-
mask_batch = gt[1] if len(gt) > 1 and not self.ignore_mask and gt[1].numel() > 0 else ([None] * len(pred_batch))
|
96 |
-
cls_batch = gt[2] if len(gt) > 2 else [None] * len(pred_batch)
|
97 |
-
|
98 |
-
if self.resize_to is not None:
|
99 |
-
gt_batch = nnf.interpolate(gt_batch, self.resize_to, mode='nearest')
|
100 |
-
pred_batch = nnf.interpolate(pred_batch, self.resize_to, mode='bilinear', align_corners=False)
|
101 |
-
|
102 |
-
if isinstance(cls_batch, torch.Tensor):
|
103 |
-
cls_batch = cls_batch.cpu().numpy().tolist()
|
104 |
-
|
105 |
-
assert len(gt_batch) == len(pred_batch) == len(cls_batch), f'{len(gt_batch)} {len(pred_batch)} {len(cls_batch)}'
|
106 |
-
|
107 |
-
for predictions, ground_truth, mask, cls in zip(pred_batch, gt_batch, mask_batch, cls_batch):
|
108 |
-
|
109 |
-
if self.resize_pred:
|
110 |
-
predictions = nnf.interpolate(predictions.unsqueeze(0).float(), size=ground_truth.size()[-2:], mode='bilinear', align_corners=True)
|
111 |
-
|
112 |
-
p = predictions.flatten()
|
113 |
-
g = ground_truth.flatten()
|
114 |
-
|
115 |
-
assert len(p) == len(g)
|
116 |
-
|
117 |
-
if mask is not None:
|
118 |
-
m = mask.flatten().bool()
|
119 |
-
p = p[m]
|
120 |
-
g = g[m]
|
121 |
-
|
122 |
-
p_sorted = p.sort()
|
123 |
-
p = p_sorted.values
|
124 |
-
g = g[p_sorted.indices]
|
125 |
-
|
126 |
-
tps, fps, fns, tns = [], [], [], []
|
127 |
-
for thresh in self.threshold_values:
|
128 |
-
|
129 |
-
valid = torch.where(p > thresh)[0]
|
130 |
-
if len(valid) > 0:
|
131 |
-
n = int(valid[0])
|
132 |
-
else:
|
133 |
-
n = len(g)
|
134 |
-
|
135 |
-
fn = int(g[:n].sum())
|
136 |
-
tp = int(g[n:].sum())
|
137 |
-
fns += [fn]
|
138 |
-
tns += [n - fn]
|
139 |
-
tps += [tp]
|
140 |
-
fps += [len(g) - n - tp]
|
141 |
-
|
142 |
-
self.metrics['tp'] += [tps]
|
143 |
-
self.metrics['fp'] += [fps]
|
144 |
-
self.metrics['fn'] += [fns]
|
145 |
-
self.metrics['tn'] += [tns]
|
146 |
-
|
147 |
-
self.classes += [cls.item() if isinstance(cls, torch.Tensor) else cls]
|
148 |
-
|
149 |
-
def value(self):
|
150 |
-
|
151 |
-
import time
|
152 |
-
t_start = time.time()
|
153 |
-
|
154 |
-
if set(self.classes) == set([None]):
|
155 |
-
all_classes = None
|
156 |
-
log.warning('classes were not provided, cannot compute mIoU')
|
157 |
-
else:
|
158 |
-
all_classes = set(int(c) for c in self.classes)
|
159 |
-
# log.info(f'compute metrics for {len(all_classes)} classes')
|
160 |
-
|
161 |
-
summed = {k: [sum([self.metrics[k][i][j]
|
162 |
-
for i in range(len(self.metrics[k]))])
|
163 |
-
for j in range(len(self.threshold_values))]
|
164 |
-
for k in self.metrics.keys()}
|
165 |
-
|
166 |
-
if all_classes is not None:
|
167 |
-
|
168 |
-
assert len(self.classes) == len(self.metrics['tp']) == len(self.metrics['fn'])
|
169 |
-
# group by class
|
170 |
-
metrics_by_class = {c: {k: [] for k in self.metrics.keys()} for c in all_classes}
|
171 |
-
for i in range(len(self.metrics['tp'])):
|
172 |
-
for k in self.metrics.keys():
|
173 |
-
metrics_by_class[self.classes[i]][k] += [self.metrics[k][i]]
|
174 |
-
|
175 |
-
# sum over all instances within the classes
|
176 |
-
summed_by_cls = {k: {c: np.array(metrics_by_class[c][k]).sum(0).tolist() for c in all_classes} for k in self.metrics.keys()}
|
177 |
-
|
178 |
-
|
179 |
-
# Compute average precision
|
180 |
-
|
181 |
-
assert (np.array(summed['fp']) + np.array(summed['tp']) ).sum(), 'no predictions is made'
|
182 |
-
|
183 |
-
# only consider values where a prediction is made
|
184 |
-
precisions = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j]) for j in range(len(self.threshold_values))
|
185 |
-
if summed['tp'][j] + summed['fp'][j] > 0]
|
186 |
-
recalls = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))
|
187 |
-
if summed['tp'][j] + summed['fp'][j] > 0]
|
188 |
-
|
189 |
-
# remove duplicate recall-precision-pairs (and sort by recall value)
|
190 |
-
recalls, precisions = zip(*sorted(list(set(zip(recalls, precisions))), key=lambda x: x[0]))
|
191 |
-
|
192 |
-
from scipy.integrate import simps
|
193 |
-
ap = simps(precisions, recalls)
|
194 |
-
|
195 |
-
# Compute best IoU
|
196 |
-
fgiou_scores = [summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j]) for j in range(len(self.threshold_values))]
|
197 |
-
|
198 |
-
biniou_scores = [
|
199 |
-
0.5*(summed['tp'][j] / (1 + summed['tp'][j] + summed['fp'][j] + summed['fn'][j])) +
|
200 |
-
0.5*(summed['tn'][j] / (1 + summed['tn'][j] + summed['fn'][j] + summed['fp'][j]))
|
201 |
-
for j in range(len(self.threshold_values))
|
202 |
-
]
|
203 |
-
|
204 |
-
index_0p5 = self.threshold_values.tolist().index(0.5)
|
205 |
-
index_0p1 = self.threshold_values.tolist().index(0.1)
|
206 |
-
index_0p2 = self.threshold_values.tolist().index(0.2)
|
207 |
-
index_0p3 = self.threshold_values.tolist().index(0.3)
|
208 |
-
|
209 |
-
if self.custom_threshold is not None:
|
210 |
-
index_ct = self.threshold_values.tolist().index(self.custom_threshold)
|
211 |
-
|
212 |
-
if all_classes is not None:
|
213 |
-
# mean IoU
|
214 |
-
mean_ious = [np.mean([summed_by_cls['tp'][c][j] / (1 + summed_by_cls['tp'][c][j] + summed_by_cls['fp'][c][j] + summed_by_cls['fn'][c][j])
|
215 |
-
for c in all_classes])
|
216 |
-
for j in range(len(self.threshold_values))]
|
217 |
-
|
218 |
-
mean_iou_dict = {
|
219 |
-
'miou_best': max(mean_ious) if all_classes is not None else None,
|
220 |
-
'miou_0.5': mean_ious[index_0p5] if all_classes is not None else None,
|
221 |
-
'miou_0.1': mean_ious[index_0p1] if all_classes is not None else None,
|
222 |
-
'miou_0.2': mean_ious[index_0p2] if all_classes is not None else None,
|
223 |
-
'miou_0.3': mean_ious[index_0p3] if all_classes is not None else None,
|
224 |
-
'miou_best_t': self.threshold_values[np.argmax(mean_ious)],
|
225 |
-
'mean_iou_ct': mean_ious[index_ct] if all_classes is not None and self.custom_threshold is not None else None,
|
226 |
-
'mean_iou_scores': mean_ious,
|
227 |
-
}
|
228 |
-
|
229 |
-
print(f'metric computation on {(len(all_classes) if all_classes is not None else "no")} classes took {time.time() - t_start:.1f}s')
|
230 |
-
|
231 |
-
return {
|
232 |
-
'ap': ap,
|
233 |
-
|
234 |
-
# fgiou
|
235 |
-
'fgiou_best': max(fgiou_scores),
|
236 |
-
'fgiou_0.5': fgiou_scores[index_0p5],
|
237 |
-
'fgiou_0.1': fgiou_scores[index_0p1],
|
238 |
-
'fgiou_0.2': fgiou_scores[index_0p2],
|
239 |
-
'fgiou_0.3': fgiou_scores[index_0p3],
|
240 |
-
'fgiou_best_t': self.threshold_values[np.argmax(fgiou_scores)],
|
241 |
-
|
242 |
-
# mean iou
|
243 |
-
|
244 |
-
|
245 |
-
# biniou
|
246 |
-
'biniou_best': max(biniou_scores),
|
247 |
-
'biniou_0.5': biniou_scores[index_0p5],
|
248 |
-
'biniou_0.1': biniou_scores[index_0p1],
|
249 |
-
'biniou_0.2': biniou_scores[index_0p2],
|
250 |
-
'biniou_0.3': biniou_scores[index_0p3],
|
251 |
-
'biniou_best_t': self.threshold_values[np.argmax(biniou_scores)],
|
252 |
-
|
253 |
-
# custom threshold
|
254 |
-
'fgiou_ct': fgiou_scores[index_ct] if self.custom_threshold is not None else None,
|
255 |
-
'biniou_ct': biniou_scores[index_ct] if self.custom_threshold is not None else None,
|
256 |
-
'ct': self.custom_threshold,
|
257 |
-
|
258 |
-
# statistics
|
259 |
-
'fgiou_scores': fgiou_scores,
|
260 |
-
'biniou_scores': biniou_scores,
|
261 |
-
'precision_recall_curve': sorted(list(set(zip(recalls, precisions)))),
|
262 |
-
'summed_statistics': summed,
|
263 |
-
'summed_by_cls_statistics': summed_by_cls,
|
264 |
-
|
265 |
-
**mean_iou_dict
|
266 |
-
}
|
267 |
-
|
268 |
-
# ('ap', 'best_fgiou', 'best_miou', 'fgiou0.5', 'fgiou0.1', 'mean_iou_0p5', 'mean_iou_0p1', 'best_biniou', 'biniou_0.5', 'fgiou_thresh'
|
269 |
-
|
270 |
-
# return ap, best_fgiou, best_mean_iou, iou_0p5, iou_0p1, mean_iou_0p5, mean_iou_0p1, best_biniou, biniou0p5, best_fgiou_thresh, {'summed': summed, 'summed_by_cls': summed_by_cls}
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|