File size: 10,887 Bytes
3b06696
 
 
 
 
 
 
 
 
 
d56d267
3b06696
 
 
 
 
 
 
 
 
a9235bb
 
25d3956
e3d310b
 
d56d267
3b16b97
d56d267
3b06696
1d84e1d
 
d56d267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b06696
d56d267
 
3b06696
d56d267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebb8b5
25d3956
 
3b06696
492fffc
 
3b06696
b8850be
d56d267
 
a9235bb
3b06696
4ebb8b5
 
25d3956
4ebb8b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7865d26
4ebb8b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d56d267
 
4ebb8b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b06696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebb8b5
d56d267
 
 
3b06696
d56d267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b06696
d56d267
 
 
ff46702
d56d267
714a05a
d41d75b
3b06696
25d3956
 
4ebb8b5
25d3956
 
c8d4706
 
3780d1e
492fffc
 
25d3956
d56d267
492fffc
25d3956
d56d267
decf237
ba7dc43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import math
import os
from glob import glob
from pathlib import Path
from typing import Optional

import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from fire import Fire
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import ToTensor

from scripts.util.detection.nsfw_and_watermark_dectection import \
    DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config

import gradio as gr
import uuid
import random
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints") 

version = "svd_xt"
device = "cuda"
max_64_bit_int = 2**63 - 1

def load_model(
    config: str,
    device: str,
    num_frames: int,
    num_steps: int,
):
    config = OmegaConf.load(config)
    if device == "cuda":
        config.model.params.conditioner_config.params.emb_models[
            0
        ].params.open_clip_embedding_config.params.init_device = device

    config.model.params.sampler_config.params.num_steps = num_steps
    config.model.params.sampler_config.params.guider_config.params.num_frames = (
        num_frames
    )
    if device == "cuda":
        with torch.device(device):
            model = instantiate_from_config(config.model).to(device).eval()
    else:
        model = instantiate_from_config(config.model).to(device).eval()

    filter = DeepFloydDataFiltering(verbose=False, device=device)
    return model, filter

if version == "svd_xt":
    num_frames = 25
    num_steps = 30
    model_config = "scripts/sampling/configs/svd_xt.yaml"
else:
    raise ValueError(f"Version {version} does not exist.")

model, filter = load_model(
    model_config,
    device,
    num_frames,
    num_steps,
)

def sample(
    image: Image,
    seed: Optional[int] = None,
    randomize_seed: bool = True,
    motion_bucket_id: int = 127,
    fps_id: int = 6,
    version: str = "svd_xt",
    cond_aug: float = 0.02,
    decoding_t: int = 5,  # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
    device: str = "cuda",
    output_folder: str = "outputs",
    progress=gr.Progress(track_tqdm=True)
):
    if(randomize_seed):
        seed = random.randint(0, max_64_bit_int)
        
    torch.manual_seed(seed)
    
    if image.mode == "RGBA":
        image = image.convert("RGB")
    w, h = image.size

    if h % 64 != 0 or w % 64 != 0:
        width, height = map(lambda x: x - x % 64, (w, h))
        image = image.resize((width, height))
        print(
            f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
        )

    image = ToTensor()(image)
    image = image * 2.0 - 1.0
    image = image.unsqueeze(0).to(device)
    H, W = image.shape[2:]
    assert image.shape[1] == 3
    F = 8
    C = 4
    shape = (num_frames, C, H // F, W // F)
    if (H, W) != (576, 1024):
        print(
            "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
        )
    if motion_bucket_id > 255:
        print(
            "WARNING: High motion bucket! This may lead to suboptimal performance."
        )

    if fps_id < 5:
        print("WARNING: Small fps value! This may lead to suboptimal performance.")

    if fps_id > 30:
        print("WARNING: Large fps value! This may lead to suboptimal performance.")

    value_dict = {}
    value_dict["motion_bucket_id"] = motion_bucket_id
    value_dict["fps_id"] = fps_id
    value_dict["cond_aug"] = cond_aug
    value_dict["cond_frames_without_noise"] = image
    value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
    value_dict["cond_aug"] = cond_aug

    with torch.no_grad():
        with torch.autocast(device):
            batch, batch_uc = get_batch(
                get_unique_embedder_keys_from_conditioner(model.conditioner),
                value_dict,
                [1, num_frames],
                T=num_frames,
                device=device,
            )
            c, uc = model.conditioner.get_unconditional_conditioning(
                batch,
                batch_uc=batch_uc,
                force_uc_zero_embeddings=[
                    "cond_frames",
                    "cond_frames_without_noise",
                ],
            )

            for k in ["crossattn", "concat"]:
                uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
                uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
                c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
                c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)

            randn = torch.randn(shape, device=device)

            additional_model_inputs = {}
            additional_model_inputs["image_only_indicator"] = torch.zeros(
                2, num_frames
            ).to(device)
            additional_model_inputs["num_video_frames"] = batch["num_video_frames"]

            def denoiser(input, sigma, c):
                return model.denoiser(
                    model.model, input, sigma, c, **additional_model_inputs
                )

            samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
            model.en_and_decode_n_samples_a_time = decoding_t
            samples_x = model.decode_first_stage(samples_z)
            samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)

            os.makedirs(output_folder, exist_ok=True)
            base_count = len(glob(os.path.join(output_folder, "*.mp4")))
            video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
            writer = cv2.VideoWriter(
                video_path,
                cv2.VideoWriter_fourcc(*"mp4v"),
                fps_id + 1,
                (samples.shape[-1], samples.shape[-2]),
            )

            samples = embed_watermark(samples)
            samples = filter(samples)
            vid = (
                (rearrange(samples, "t c h w -> t h w c") * 255)
                .cpu()
                .numpy()
                .astype(np.uint8)
            )
            for frame in vid:
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                writer.write(frame)
            writer.release()
    return video_path, seed

def get_unique_embedder_keys_from_conditioner(conditioner):
    return list(set([x.input_key for x in conditioner.embedders]))


def get_batch(keys, value_dict, N, T, device):
    batch = {}
    batch_uc = {}

    for key in keys:
        if key == "fps_id":
            batch[key] = (
                torch.tensor([value_dict["fps_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "motion_bucket_id":
            batch[key] = (
                torch.tensor([value_dict["motion_bucket_id"]])
                .to(device)
                .repeat(int(math.prod(N)))
            )
        elif key == "cond_aug":
            batch[key] = repeat(
                torch.tensor([value_dict["cond_aug"]]).to(device),
                "1 -> b",
                b=math.prod(N),
            )
        elif key == "cond_frames":
            batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
        elif key == "cond_frames_without_noise":
            batch[key] = repeat(
                value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
            )
        else:
            batch[key] = value_dict[key]

    if T is not None:
        batch["num_video_frames"] = T

    for key in batch.keys():
        if key not in batch_uc and isinstance(batch[key], torch.Tensor):
            batch_uc[key] = torch.clone(batch[key])
    return batch, batch_uc

def resize_image(image, output_size=(1024, 576)):
    # Calculate aspect ratios
    target_aspect = output_size[0] / output_size[1]  # Aspect ratio of the desired size
    image_aspect = image.width / image.height  # Aspect ratio of the original image

    # Resize then crop if the original image is larger
    if image_aspect > target_aspect:
        # Resize the image to match the target height, maintaining aspect ratio
        new_height = output_size[1]
        new_width = int(new_height * image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = (new_width - output_size[0]) / 2
        top = 0
        right = (new_width + output_size[0]) / 2
        bottom = output_size[1]
    else:
        # Resize the image to match the target width, maintaining aspect ratio
        new_width = output_size[0]
        new_height = int(new_width / image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = 0
        top = (new_height - output_size[1]) / 2
        right = output_size[0]
        bottom = (new_height + output_size[1]) / 2

    # Crop the image
    cropped_image = resized_image.crop((left, top, right, bottom))
    return cropped_image

with gr.Blocks() as demo:
  gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). Generation takes ~60s in an A100. [Join the waitlist for Stability's upcoming web experience](https://stability.ai/contact).
  ''')
  with gr.Row():
    with gr.Column():
        image = gr.Image(label="Upload your image", type="pil")
        generate_btn = gr.Button("Generate")
    video = gr.Video()
  with gr.Accordion("Advanced options", open=False):
      seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
      randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
      motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
      fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
      
  image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
  
if __name__ == "__main__":
    demo.queue(max_size=20)
    demo.launch(share=True)