Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -60,14 +60,14 @@ pipe.set_adapters(["causvid_lora"], adapter_weights=[1.0])
|
|
60 |
MOD_VALUE = 32
|
61 |
MOD_VALUE_H = MOD_VALUE_W = MOD_VALUE
|
62 |
|
63 |
-
DEFAULT_H_SLIDER_VALUE = 512
|
64 |
-
DEFAULT_W_SLIDER_VALUE = 896
|
65 |
|
66 |
# New fixed max_area for the calculation formula
|
67 |
-
NEW_FORMULA_MAX_AREA = float(480 * 832)
|
68 |
|
69 |
SLIDER_MIN_H = 128
|
70 |
-
SLIDER_MAX_H = 896
|
71 |
SLIDER_MIN_W = 128
|
72 |
SLIDER_MAX_W = 896
|
73 |
|
@@ -82,36 +82,22 @@ def _calculate_new_dimensions_wan(pil_image: Image.Image, mod_val: int, calculat
|
|
82 |
return default_h, default_w
|
83 |
|
84 |
aspect_ratio = orig_h / orig_w
|
85 |
-
|
86 |
-
# New calculation logic as per user request:
|
87 |
-
# height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
88 |
-
# width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
89 |
-
|
90 |
-
# Calculate sqrt terms
|
91 |
sqrt_h_term = np.sqrt(calculation_max_area * aspect_ratio)
|
92 |
sqrt_w_term = np.sqrt(calculation_max_area / aspect_ratio)
|
93 |
|
94 |
-
# Apply the formula: round(sqrt_term) then floor_division by mod_val, then multiply by mod_val
|
95 |
calc_h = round(sqrt_h_term) // mod_val * mod_val
|
96 |
calc_w = round(sqrt_w_term) // mod_val * mod_val
|
97 |
|
98 |
-
# Ensure calculated dimensions are at least mod_val (since round(...) // mod_val * mod_val can yield 0 if round(sqrt_term) < mod_val)
|
99 |
calc_h = mod_val if calc_h < mod_val else calc_h
|
100 |
calc_w = mod_val if calc_w < mod_val else calc_w
|
101 |
|
102 |
-
# Determine effective min/max dimensions from slider limits, ensuring they are multiples of mod_val.
|
103 |
-
# Slider min values (min_slider_h, min_slider_w) are assumed to be multiples of mod_val.
|
104 |
effective_min_h = min_slider_h
|
105 |
effective_min_w = min_slider_w
|
106 |
|
107 |
-
# Slider max values (max_slider_h, max_slider_w) might not be multiples of mod_val.
|
108 |
-
# The actual maximum value a slider can output is (its_max_limit // mod_val) * mod_val.
|
109 |
effective_max_h_from_slider = (max_slider_h // mod_val) * mod_val
|
110 |
effective_max_w_from_slider = (max_slider_w // mod_val) * mod_val
|
111 |
-
|
112 |
-
# Clip calc_h and calc_w (which are already multiples of mod_val)
|
113 |
-
# to the effective slider range (which are also multiples of mod_val).
|
114 |
-
# The results (new_h, new_w) will therefore also be multiples of mod_val.
|
115 |
new_h = int(np.clip(calc_h, effective_min_h, effective_max_h_from_slider))
|
116 |
new_w = int(np.clip(calc_w, effective_min_w, effective_max_w_from_slider))
|
117 |
|
@@ -144,32 +130,43 @@ def handle_image_upload_for_dims_wan(uploaded_pil_image: Image.Image | None, cur
|
|
144 |
# --- Gradio Interface Function ---
|
145 |
@spaces.GPU
|
146 |
def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str,
|
147 |
-
height: int, width: int,
|
148 |
-
guidance_scale: float, steps: int,
|
149 |
-
progress=gr.Progress(track_tqdm=True)):
|
150 |
if input_image is None:
|
151 |
raise gr.Error("Please upload an input image.")
|
152 |
|
|
|
|
|
|
|
|
|
|
|
153 |
logger.info("Starting video generation...")
|
154 |
logger.info(f" Input Image: Uploaded (Original size: {input_image.size if input_image else 'N/A'})")
|
155 |
logger.info(f" Prompt: {prompt}")
|
156 |
logger.info(f" Negative Prompt: {negative_prompt if negative_prompt else 'None'}")
|
157 |
logger.info(f" Target Output Height: {height}, Target Output Width: {width}")
|
158 |
-
logger.info(f" Num Frames: {num_frames}, FPS for conditioning & export: {fps_for_conditioning_and_export}")
|
159 |
-
logger.info(f" Guidance Scale: {guidance_scale}, Steps: {steps}")
|
160 |
|
161 |
target_height = int(height)
|
162 |
target_width = int(width)
|
163 |
-
|
164 |
-
fps_val = int(fps_for_conditioning_and_export)
|
165 |
guidance_scale_val = float(guidance_scale)
|
166 |
steps_val = int(steps)
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
# Ensure dimensions are compatible.
|
169 |
-
# With the updated _calculate_new_dimensions_wan, height and width from sliders
|
170 |
-
# (after image upload auto-adjustment) should already be multiples of MOD_VALUE.
|
171 |
-
# This block acts as a safeguard if values come from direct slider interaction
|
172 |
-
# before an image upload, or if something unexpected happens.
|
173 |
if target_height % MOD_VALUE_H != 0:
|
174 |
logger.warning(f"Height {target_height} is not a multiple of {MOD_VALUE_H}. Adjusting...")
|
175 |
target_height = (target_height // MOD_VALUE_H) * MOD_VALUE_H
|
@@ -177,7 +174,6 @@ def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str,
|
|
177 |
logger.warning(f"Width {target_width} is not a multiple of {MOD_VALUE_W}. Adjusting...")
|
178 |
target_width = (target_width // MOD_VALUE_W) * MOD_VALUE_W
|
179 |
|
180 |
-
# Ensure minimum size (should already be handled by _calculate_new_dimensions_wan and slider mins)
|
181 |
target_height = max(MOD_VALUE_H, target_height if target_height > 0 else MOD_VALUE_H)
|
182 |
target_width = max(MOD_VALUE_W, target_width if target_width > 0 else MOD_VALUE_W)
|
183 |
|
@@ -192,17 +188,16 @@ def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str,
|
|
192 |
negative_prompt=negative_prompt,
|
193 |
height=target_height,
|
194 |
width=target_width,
|
195 |
-
num_frames=num_frames
|
196 |
guidance_scale=guidance_scale_val,
|
197 |
num_inference_steps=steps_val,
|
198 |
-
generator=torch.Generator(device="cuda").manual_seed(0)
|
199 |
).frames[0]
|
200 |
|
201 |
-
# Using a temporary file for video export
|
202 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
203 |
video_path = tmpfile.name
|
204 |
|
205 |
-
export_to_video(output_frames_list, video_path, fps=
|
206 |
logger.info(f"Video successfully generated and saved to {video_path}")
|
207 |
return video_path
|
208 |
|
@@ -213,19 +208,14 @@ penguin_image_url = "https://huggingface.co/datasets/huggingface/documentation-i
|
|
213 |
|
214 |
with gr.Blocks() as demo:
|
215 |
gr.Markdown(f"""
|
216 |
-
#
|
217 |
-
Powered by `diffusers` and `{MODEL_ID}`.
|
218 |
-
Model is loaded into memory when the app starts. This might take a few minutes.
|
219 |
-
Ensure you have a GPU with sufficient VRAM (e.g., ~24GB+ for these default settings).
|
220 |
-
Output Height and Width will be multiples of **{MOD_VALUE}**.
|
221 |
-
Uploading an image will suggest dimensions based on its aspect ratio and a pre-defined target pixel area ({NEW_FORMULA_MAX_AREA:.0f} pixels),
|
222 |
-
clamped to slider limits.
|
223 |
""")
|
224 |
with gr.Row():
|
225 |
with gr.Column():
|
226 |
input_image_component = gr.Image(type="pil", label="Input Image (will be resized to target H/W)")
|
227 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v, lines=3)
|
228 |
-
|
|
|
229 |
with gr.Accordion("Advanced Settings", open=False):
|
230 |
negative_prompt_input = gr.Textbox(
|
231 |
label="Negative Prompt (Optional)",
|
@@ -235,41 +225,35 @@ with gr.Blocks() as demo:
|
|
235 |
with gr.Row():
|
236 |
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
237 |
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") # WanI2V is good with few steps
|
242 |
-
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale") # Low CFG usually better for I2V
|
243 |
|
244 |
generate_button = gr.Button("Generate Video", variant="primary")
|
245 |
|
246 |
with gr.Column():
|
247 |
video_output = gr.Video(label="Generated Video", interactive=False)
|
248 |
|
249 |
-
# Connect image upload to dimension auto-adjustment
|
250 |
input_image_component.upload(
|
251 |
fn=handle_image_upload_for_dims_wan,
|
252 |
-
inputs=[input_image_component, height_input, width_input],
|
253 |
outputs=[height_input, width_input]
|
254 |
)
|
255 |
-
# Also trigger on clear, though handle_image_upload_for_dims_wan handles None input
|
256 |
input_image_component.clear(
|
257 |
fn=handle_image_upload_for_dims_wan,
|
258 |
inputs=[input_image_component, height_input, width_input],
|
259 |
outputs=[height_input, width_input]
|
260 |
)
|
261 |
|
262 |
-
|
263 |
inputs_for_click_and_examples = [
|
264 |
input_image_component,
|
265 |
prompt_input,
|
266 |
negative_prompt_input,
|
267 |
height_input,
|
268 |
width_input,
|
269 |
-
|
270 |
guidance_scale_input,
|
271 |
-
steps_slider
|
272 |
-
fps_input
|
273 |
]
|
274 |
|
275 |
generate_button.click(
|
@@ -280,13 +264,13 @@ with gr.Blocks() as demo:
|
|
280 |
|
281 |
gr.Examples(
|
282 |
examples=[
|
283 |
-
[penguin_image_url, "a penguin playfully dancing in the snow, Antarctica", default_negative_prompt,
|
284 |
-
["https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0001.jpg", "the frog jumps around", default_negative_prompt,
|
285 |
],
|
286 |
-
inputs=inputs_for_click_and_examples,
|
287 |
outputs=video_output,
|
288 |
fn=generate_video,
|
289 |
-
cache_examples="lazy"
|
290 |
)
|
291 |
|
292 |
if __name__ == "__main__":
|
|
|
60 |
MOD_VALUE = 32
|
61 |
MOD_VALUE_H = MOD_VALUE_W = MOD_VALUE
|
62 |
|
63 |
+
DEFAULT_H_SLIDER_VALUE = 512
|
64 |
+
DEFAULT_W_SLIDER_VALUE = 896
|
65 |
|
66 |
# New fixed max_area for the calculation formula
|
67 |
+
NEW_FORMULA_MAX_AREA = float(480 * 832)
|
68 |
|
69 |
SLIDER_MIN_H = 128
|
70 |
+
SLIDER_MAX_H = 896
|
71 |
SLIDER_MIN_W = 128
|
72 |
SLIDER_MAX_W = 896
|
73 |
|
|
|
82 |
return default_h, default_w
|
83 |
|
84 |
aspect_ratio = orig_h / orig_w
|
85 |
+
|
|
|
|
|
|
|
|
|
|
|
86 |
sqrt_h_term = np.sqrt(calculation_max_area * aspect_ratio)
|
87 |
sqrt_w_term = np.sqrt(calculation_max_area / aspect_ratio)
|
88 |
|
|
|
89 |
calc_h = round(sqrt_h_term) // mod_val * mod_val
|
90 |
calc_w = round(sqrt_w_term) // mod_val * mod_val
|
91 |
|
|
|
92 |
calc_h = mod_val if calc_h < mod_val else calc_h
|
93 |
calc_w = mod_val if calc_w < mod_val else calc_w
|
94 |
|
|
|
|
|
95 |
effective_min_h = min_slider_h
|
96 |
effective_min_w = min_slider_w
|
97 |
|
|
|
|
|
98 |
effective_max_h_from_slider = (max_slider_h // mod_val) * mod_val
|
99 |
effective_max_w_from_slider = (max_slider_w // mod_val) * mod_val
|
100 |
+
|
|
|
|
|
|
|
101 |
new_h = int(np.clip(calc_h, effective_min_h, effective_max_h_from_slider))
|
102 |
new_w = int(np.clip(calc_w, effective_min_w, effective_max_w_from_slider))
|
103 |
|
|
|
130 |
# --- Gradio Interface Function ---
|
131 |
@spaces.GPU
|
132 |
def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str,
|
133 |
+
height: int, width: int, duration_seconds: float, # Changed from num_frames
|
134 |
+
guidance_scale: float, steps: int,
|
135 |
+
progress=gr.Progress(track_tqdm=True)): # Removed fps_for_conditioning_and_export
|
136 |
if input_image is None:
|
137 |
raise gr.Error("Please upload an input image.")
|
138 |
|
139 |
+
# Constants for frame calculation
|
140 |
+
FIXED_FPS = 24
|
141 |
+
MIN_FRAMES_MODEL = 8 # Based on original num_frames_input slider min
|
142 |
+
MAX_FRAMES_MODEL = 81 # Based on original num_frames_input slider max
|
143 |
+
|
144 |
logger.info("Starting video generation...")
|
145 |
logger.info(f" Input Image: Uploaded (Original size: {input_image.size if input_image else 'N/A'})")
|
146 |
logger.info(f" Prompt: {prompt}")
|
147 |
logger.info(f" Negative Prompt: {negative_prompt if negative_prompt else 'None'}")
|
148 |
logger.info(f" Target Output Height: {height}, Target Output Width: {width}")
|
|
|
|
|
149 |
|
150 |
target_height = int(height)
|
151 |
target_width = int(width)
|
152 |
+
# duration_seconds is already float
|
|
|
153 |
guidance_scale_val = float(guidance_scale)
|
154 |
steps_val = int(steps)
|
155 |
|
156 |
+
# Calculate number of frames based on duration and fixed FPS
|
157 |
+
num_frames_for_pipeline = int(round(duration_seconds * FIXED_FPS))
|
158 |
+
# Clamp num_frames to be within model's supported range
|
159 |
+
num_frames_for_pipeline = max(MIN_FRAMES_MODEL, min(MAX_FRAMES_MODEL, num_frames_for_pipeline))
|
160 |
+
# Ensure at least MIN_FRAMES_MODEL if rounding leads to a very small number (or zero)
|
161 |
+
if num_frames_for_pipeline < MIN_FRAMES_MODEL:
|
162 |
+
num_frames_for_pipeline = MIN_FRAMES_MODEL
|
163 |
+
|
164 |
+
logger.info(f" Duration: {duration_seconds:.1f}s, Fixed FPS (conditioning & export): {FIXED_FPS}")
|
165 |
+
logger.info(f" Calculated Num Frames: {num_frames_for_pipeline} (clamped to [{MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL}])")
|
166 |
+
logger.info(f" Guidance Scale: {guidance_scale_val}, Steps: {steps_val}")
|
167 |
+
|
168 |
+
|
169 |
# Ensure dimensions are compatible.
|
|
|
|
|
|
|
|
|
170 |
if target_height % MOD_VALUE_H != 0:
|
171 |
logger.warning(f"Height {target_height} is not a multiple of {MOD_VALUE_H}. Adjusting...")
|
172 |
target_height = (target_height // MOD_VALUE_H) * MOD_VALUE_H
|
|
|
174 |
logger.warning(f"Width {target_width} is not a multiple of {MOD_VALUE_W}. Adjusting...")
|
175 |
target_width = (target_width // MOD_VALUE_W) * MOD_VALUE_W
|
176 |
|
|
|
177 |
target_height = max(MOD_VALUE_H, target_height if target_height > 0 else MOD_VALUE_H)
|
178 |
target_width = max(MOD_VALUE_W, target_width if target_width > 0 else MOD_VALUE_W)
|
179 |
|
|
|
188 |
negative_prompt=negative_prompt,
|
189 |
height=target_height,
|
190 |
width=target_width,
|
191 |
+
num_frames=num_frames_for_pipeline, # Use calculated and clamped num_frames
|
192 |
guidance_scale=guidance_scale_val,
|
193 |
num_inference_steps=steps_val,
|
194 |
+
generator=torch.Generator(device="cuda").manual_seed(0)
|
195 |
).frames[0]
|
196 |
|
|
|
197 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
198 |
video_path = tmpfile.name
|
199 |
|
200 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS) # Use fixed FPS for export
|
201 |
logger.info(f"Video successfully generated and saved to {video_path}")
|
202 |
return video_path
|
203 |
|
|
|
208 |
|
209 |
with gr.Blocks() as demo:
|
210 |
gr.Markdown(f"""
|
211 |
+
# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
""")
|
213 |
with gr.Row():
|
214 |
with gr.Column():
|
215 |
input_image_component = gr.Image(type="pil", label="Input Image (will be resized to target H/W)")
|
216 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v, lines=3)
|
217 |
+
duration_seconds_input = gr.Slider(minimum=0.4, maximum=3.3, step=0.1, value=1.7, label="Duration (seconds)", info="The CausVid LoRA was trained on 24fps, Wan has 81 maximum frames limit, limiting the maximum to 3.3s")
|
218 |
+
|
219 |
with gr.Accordion("Advanced Settings", open=False):
|
220 |
negative_prompt_input = gr.Textbox(
|
221 |
label="Negative Prompt (Optional)",
|
|
|
225 |
with gr.Row():
|
226 |
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
|
227 |
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
|
228 |
+
|
229 |
+
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps")
|
230 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
|
|
|
|
|
231 |
|
232 |
generate_button = gr.Button("Generate Video", variant="primary")
|
233 |
|
234 |
with gr.Column():
|
235 |
video_output = gr.Video(label="Generated Video", interactive=False)
|
236 |
|
|
|
237 |
input_image_component.upload(
|
238 |
fn=handle_image_upload_for_dims_wan,
|
239 |
+
inputs=[input_image_component, height_input, width_input],
|
240 |
outputs=[height_input, width_input]
|
241 |
)
|
|
|
242 |
input_image_component.clear(
|
243 |
fn=handle_image_upload_for_dims_wan,
|
244 |
inputs=[input_image_component, height_input, width_input],
|
245 |
outputs=[height_input, width_input]
|
246 |
)
|
247 |
|
|
|
248 |
inputs_for_click_and_examples = [
|
249 |
input_image_component,
|
250 |
prompt_input,
|
251 |
negative_prompt_input,
|
252 |
height_input,
|
253 |
width_input,
|
254 |
+
duration_seconds_input,
|
255 |
guidance_scale_input,
|
256 |
+
steps_slider
|
|
|
257 |
]
|
258 |
|
259 |
generate_button.click(
|
|
|
264 |
|
265 |
gr.Examples(
|
266 |
examples=[
|
267 |
+
[penguin_image_url, "a penguin playfully dancing in the snow, Antarctica", default_negative_prompt, 896, 512, 2, 1.0, 4],
|
268 |
+
["https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0001.jpg", "the frog jumps around", default_negative_prompt, 448, 832, 2, 1.0, 4],
|
269 |
],
|
270 |
+
inputs=inputs_for_click_and_examples,
|
271 |
outputs=video_output,
|
272 |
fn=generate_video,
|
273 |
+
cache_examples="lazy"
|
274 |
)
|
275 |
|
276 |
if __name__ == "__main__":
|